
Francesco Gringoli
University of Trento

Laboratory of Nomadic
Communication

Course Overview

•  Introduction to Linux Networking Stack

Trento 13/3/2017 From kernel to firmware Slide 2

Francesco Gringoli
Laboratory of Nomadic

Communication
University of Trento

A glimpse into the
Linux Wireless Core:

From kernel to firmware

Outline

•  Linux Kernel Network Code
– Modular architecture: follows layering

•  Descent to (hell?) layer 2 and below
– Why hacking layer 2
– OpenFirmWare for WiFi networks

•  OpenFWWF: RX & TX data paths
– Hands on: examples

•  OpenFWWF exploitations

Trento 13/3/2017 From kernel to firmware Slide 4

Linux Kernel Network Code

A glimpse into the
Linux Kernel Wireless Code

Part 1

Linux Networking Stack
Modular architecture

•  Layers down to MAC (included)
–  All operations above/including layer 2 done by kernel code
–  Network code device agnostic
–  Net/code prepares suitable packets

•  In 802.3 stack
–  Eth code talks with device drivers
–  Device drivers

•  Map/unmap DMA desc to packets
•  Set up Hardware registers

Trento 13/3/2017 From kernel to firmware Slide 6

e1000
pkt

Upper layers
Ethernet

PCI

8139cp
pkt

pkt

pkt

Linux Networking Stack
Modular architecture

•  What happens with 802.11?
–  New drivers to handle WiFi HW: how to link to net code?
–  A wrapper “mac80211” module is added

Trento 13/3/2017 From kernel to firmware Slide 7

Upper layers
Ethernet

Upper layers
Ethernet

PCI

8139cp e1000 b43 ath9k

PCI PCI

? mac80211

Linux & 802.11
Modular architecture

•  Layers down to LLC (~mac) common with 802.3
–  All operations above/including layer 2 done by ETH/UP code

•  Packets converted to 802.11 format for rx/tx
–  By wrapper “mac80211”

•  Manage packet conversion
•  Handle AAA operations

•  Drivers: packets to devices
–  One dev type/one driver

•  Add data to “drive” the device

Trento 13/3/2017 From kernel to firmware Slide 8

mac80211

Upper layers
Ethernet

b43 ath9k

PCI PCI

8139cp

Linux & 802.11
Modular architecture/1

mac80211

ETH

b43

P
C

I

DA SA ET PACKET PAYLOAD

PACKET PAYLOAD

BSS SA LLC PACKET PAYLOAD CN DUR DA SEQ

802.11 PACKET DEVICE
DATA

802.11 PACKET DEVICE
DATA

OFDM1 OFDM2 OFDM3 OFDM4 PLCP Set HW
registers

Wait TX opportunity

GO!

• Look in neighbor tables for the destination address and egress device
• Fetch from the egress device data the source address
• Check if the egress device is associated to an AP connected to DA
• Compute Control Word, Duration, sequence num
• Fill header, add LLC (0xAA 0xAA, 0x03, 0x00, 0x00, 0x00, 0x08, 0x00)
• Add information for HW setup (device agnostic) in info fields

INFO

• Convert agnostic info into device dependent data

Trento 13/3/2017 From kernel to firmware Slide 9

Linux & 802.11

•  Opposite path: conversions reversed
•  ! Several operations involved for each packet
•  ☺ Multiple buffer copies (should be) avoided

–  E.g., original packet at layer 4 correctly allocated
•  Before L3 encapsulation output device already known

•  ! Packets are queued twice/(3 times ☺)
–  Qdisc: before wrapper
–  Device queues: between wrapper and driver/(+DMA)

•  Bottom line:
–  Clean design but can be resource exhausting

Trento 13/3/2017 From kernel to firmware Slide 10

•  Forwarding/routing packet on a double interface box

Linux & 802.11
Modular architecture

mac80211

Ethernet & upper layers

b43 ath9k

PCI

802.11 pkt

802.3 pkt 802.11 pkt

FW/Route decision

Trento 13/3/2017 From kernel to firmware Slide 11

Linux & 802.11

•  On CPU limited platform, fw performance too low
–  Need to accelerate/offload some operations

•  Ralink was first to introduce SoC WiFi devices
–  A mini-pci card hosts an ARM CPU
–  Main host attaches a standard ethernet iface
–  The ARM CPU converts ETH packet to 802.11
–  Main host focuses on data forwarding

•  Question: where can be profitably used?
–  Take a look to Andriod phones
–  2016: new 11ac cards are switching to such approach!!

Trento 13/3/2017 From kernel to firmware Slide 12

Linux & 802.11: setup

•  A simple BSS with Linux only nodes
–  One station runs hostapd (AP)
–  Others (STAs) join:

•  Once, with iw/iwconfig
•  Use a supplicant to join, e.g., use wpa_supplicant

–  Why using a supplicant?
•  management frame losses#STA disconnection
•  Why? Kernel (STA) periodically checks if AP is alive
•  If management frames lost, kernel (STA) does not retransmit!
•  A supplicant (wpa_supplicant) is needed to re-join the BSS

transparently

Trento 13/3/2017 From kernel to firmware Slide 13

Linux & 802.11: kernel setup

•  Check the device type with
$: lspci | grep -i net

•  Load the driver for Broadcom devices and check is loaded
$: modprobe b43 qos=0
$: lsmod | grep b43

•  Check kernel ring buffer with
$: dmesg | tail -30

•  Bring net up and configure an IP address
$AP: ifconfig wlan0 172.16.0.1 up

 $STA: ifconfig wlan0 172.16.0.10 up

•  In following experiments we fix arp associations
$: ip neigh replace to PEERIP lladdr PEERMAC dev wlan0

–  Traffic not encrypted
–  QoS disabled

Trento 13/3/2017 From kernel to firmware Slide 14

Linux & 802.11: hostapd setup

•  Configuration of the AP in “hostapd.conf”
interface=wlan0
driver=nl80211
dump_file=/tmp/hostapd.dump
ctrl_interface=/tmp/hostapd
ssid=TESTTODAY
hw_mode=g
channel=14
beacon_int=100
auth_algs=3
wpa=0

•  Runs with
$: hostapd -B hostapd.conf # -B: run in background

•  Check dmesg!

Try to send SIGUSR1
signal to hostapd

PIPE used by
hostapd_cli

BSS properties

No encryption/
authentication

Trento 13/3/2017 From kernel to firmware Slide 15

Linux & 802.11: station setup

•  Scan for networks
$: iwlist wlan0 scan

•  Configuration of STAs in wpasupp.conf
ctrl_interface=/tmp/wpa_supplicant
network={
 ssid=”TESTODAY"

 scan_ssid=1
 key_mgmt=NONE
}

•  Runs with
$: wpa_supplicant -B -i wlan0 -c wpasupp.conf

•  Check dmesg!
•  Simple experiment: ping the AP

$: ping 172.16.0.1

PIPE used by
wpa_cli

BSS to join

Trento 13/3/2017 From kernel to firmware Slide 16

Linux & 802.11:
run some traffic

•  We use iperf in UDP mode
•  On AP, server mode

$: iperf -s -u -p3000 -i1

•  On STA, client mode
$: iperf -c172.16.0.1 -u -p3000 -i1 -t100 -b54M

•  Channel 14 is usually free (by law)
–  Try another channel, e.g., 1 or 6 or 11
–  How to do it?
–  Reconfigure hostapd and reconnect, let’s see how…

Trento 13/3/2017 From kernel to firmware Slide 17

Linux & 802.11:
check status

•  There are some “debug” helpers, on AP:
– Browse this folder

/sys/kernel/debug/ieee80211

– Learn what is phy0
– Cd to phy0/netdev:wlan0/stations
– Cd to the MAC address of the STA!!

•  Explore all the stats
•  Why rc_stats is almost empty?

•  What on the STA?

Trento 13/3/2017 From kernel to firmware Slide 18

Linux & 802.11:
capturing packets

•  On both AP and STA run “tcpdump”
$: tcpdump -i wlan0 -nn

•  Is exactly what we expect?
–  What is missing?
–  Layer 2 acknowledgment?

•  Display captured data
$: tcpdump -i wlan0 -nn -XXX

•  What kind of layer 2 header?
•  What have we captured?

Trento 13/3/2017 From kernel to firmware Slide 19

Linux & 802.11:
capturing packets

•  Run “tcpdump” on another station set in monitor mode
$: ifconfig wlan0 down
$: iwconfig wlan0 mode monitor chan 4(?)
$: ifconfig wlan0 up
$: tcpdump -i wlan0 -nn

•  What’s going on? What is that traffic?
–  Beacons (try to analyze the reported channel, what’s wrong?)
–  Probe requests/replies
–  Data frames

•  Try to dump some packet’s payload
–  What kind of header?
–  Collect a trace with tcpdump and display with Wireshark

Trento 13/3/2017 From kernel to firmware Slide 20

Linux & 802.11:
capturing packets

•  Exercise: try to capture only selected packets
•  Play with matching expression in tcpdump

$: [cut] ether[N] ==|!= 0xAB

•  Discard beacons and probes
•  Display acknowledgments
•  Display only AP and STA acknowledgments
•  Question: is a third host needed?

Trento 13/3/2017 From kernel to firmware Slide 21

Virtual Interfaces

•  Wrapper/driver “may agree” on virtual packet path
–  Each received packet duplicated by the driver
–  mac80211 creates many interfaces “bound” to same HW
–  In this example

•  Monitor interface attached
•  Blue stream follow upper stack
•  Red stream hooked to pcap

$: iw dev wlan0 interface add \
fish0 type monitor

–  Try capturing packets on the AP
•  What’s missing?

mac80211

Ethernet & upper layers

b43

PCI
pkt

pkt

pkt

Trento 13/3/2017 From kernel to firmware Slide 22

