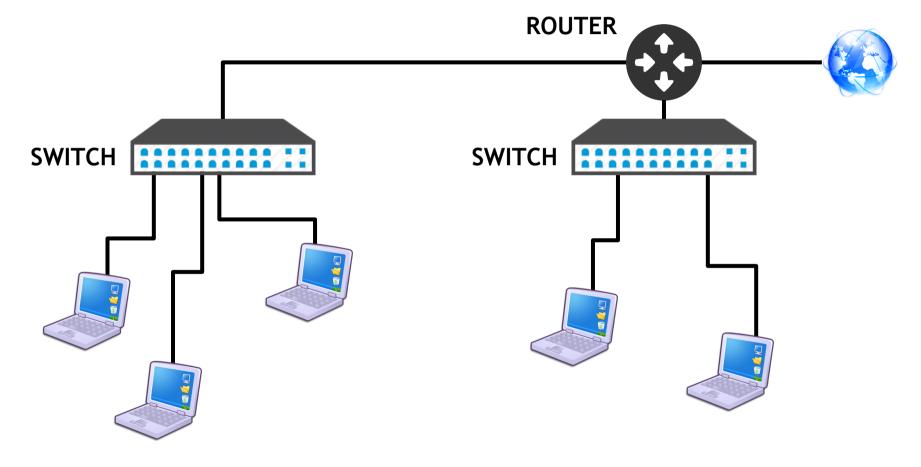


Laboratory of Nomadic Communication

Quick introduction to IEEE 802.11

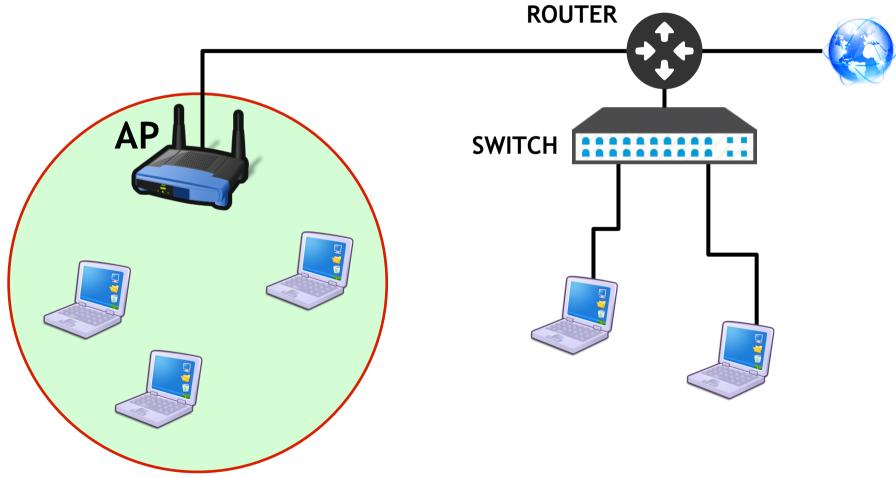
Wireless LAN Standard

A quick introduction to the IEEE 802.11 standard

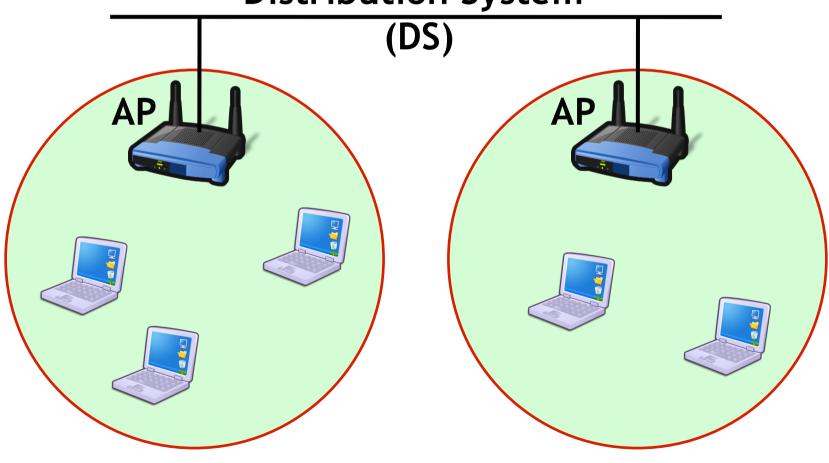


IEEE 802.11 standard

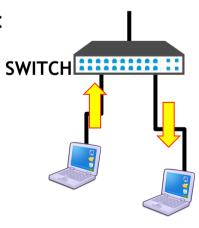
- Definition of wireless interface
 - between a client and a base station (aka: Access Point, AP)
 - between wireless clients (simply: stations)
- ☐ Two lower layers of the stack
 - 1-PHY radio transmission: modulations, bands, frequency, energy
 - 2-MAC medium access control: timings, retransmissions, signaling
- ☐ Many amendments published since '97
 - Throughput improvements (e.g., 802.11ac up to multi Gb/s)
 - Security (802.11i), QoS (802.11e), reliable multicast (802.11aa)
- ☐ Very long standard: 2012 rel. (pre 11ac) is ~2800 pages!

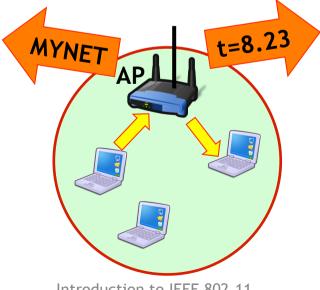


A LAN goes WIRELESS


A LAN goes WIRELESS/2

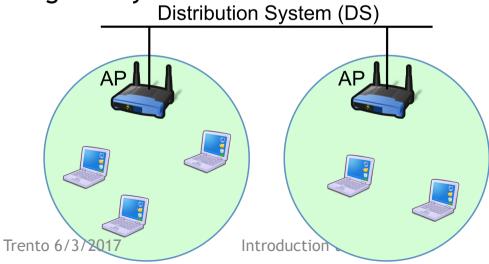
A LAN goes WIRELESS/3


Distribution System



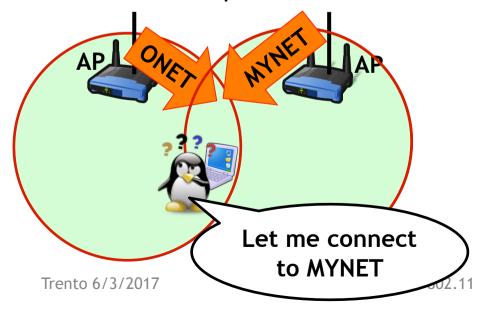
Wireless-LAN vs Wired-Lan

- ☐ Apparently: AP replaces the switch, air replaces cables
- \square AP, in fact,
 - forwards inter-stations frames (no direct communication)
 - rules stations access to the network (e.g., by authenticating)
 - manages even more issues than the switch has to, i.e.,
 - advertizes the network
 - synchronizes time etc


Trento 6/3/2017

Introduction to IEEE 802.11

802.11 Wireless-Lan: Infrastructure Mode Basic


- ☐ Each cell is an Infrastructure "Basic Service Set" (BSS)
 - The Access Point (AP) "creates" and maintain the BSS
 - Time sync, BSS name and capabilities inside "Beacons" frame
 - All BSS traffic goes through the AP
- ☐ More cells build an "Extended Service Set" (ESS)
 - A Distribution System (DS, wired or wireless) connects all APs
 - DS may connect to an Internet gateway

802.11 Wireless-Lan: Infrastructure Mode Basic

- ☐ A station that wants to connect does the following:
 - Scan: check all the available networks for one known
 - Passively, by receiving "Beacons", or Actively, by sending "Probes"
 - Authenticate: proves to the AP she knows something
 - Easiest case: simply send her identity, wait for an ack
 - Associate: station and AP shares mutual capabilities
- ☐ Eventually:
 - Station sends/receives traffic

10

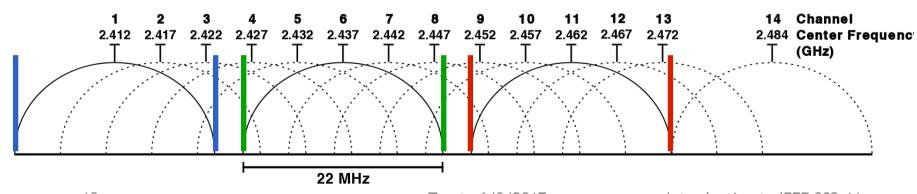
802.11 Wireless-Lan: Ad-Hoc Mode Basic

- Stations create an Ad-Hoc network with a specific "NAME"
 - No AP needed: Independent BSS (IBSS)
 - The first station active starts sending beacons (e.g., leader)
 - Other stations can join the Ad-Hoc network
 - If they do not receive the beacon from the leader, they transmit one!

A very incomplete standard synopsis

Document	year	modulation add-on	band (GHz)	width (MHz)	spatial stream	Rates addon
802.11	97	DSSS	2.4	20	/	1, 2
802.11b	99	CCK	2.4	20	/	5.5, 11
802.11a	01	OFDM	5	20	/	6 54 (8 rates)
802.11g	03	/	2.4	20	/	all the above
802.11n	09	MIMO & OFDM+	2.4 & 5	20, 40	up to	HT-PHY MCS [max 600Mb/s]
802.11ac	13	MU-MIMO & OFDM++	2.4 & 5	20,40, 80,160	up to	VHT-PHY MCS [max 6.7Gb/s]

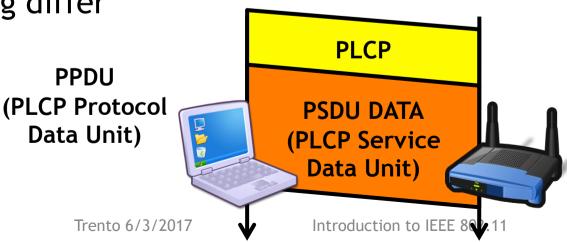
A very incomplete standard synopsis


- ☐ In this course we will use 802.11bg only devices
 - Yeah, pretty old hardware but...
 - ... we have access to the NIC internals, we can play with the standard
 - All the standards share the same basic algorithms for channel access

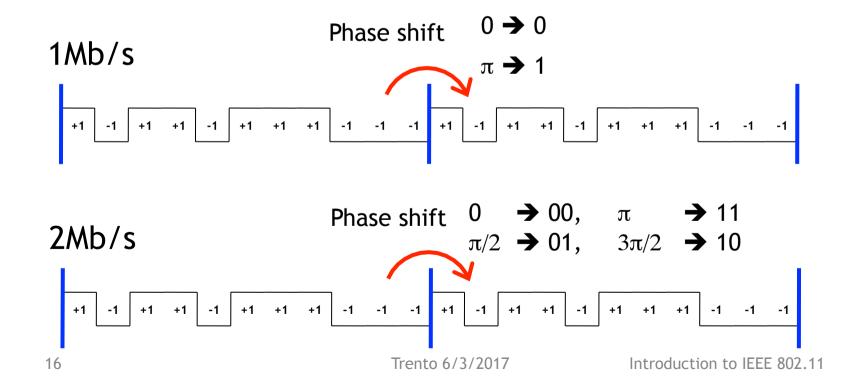
Document	modulations	band (GHz)	width (MHz)	Rates				
802.11b/g	DSSS/CCK OFDM	2.4	20	1, 2 / 5.5, 11 6, 9, 12, 18, 24, 36, 48,54				

IEEE 802.11: insight of the 2.4GHz band

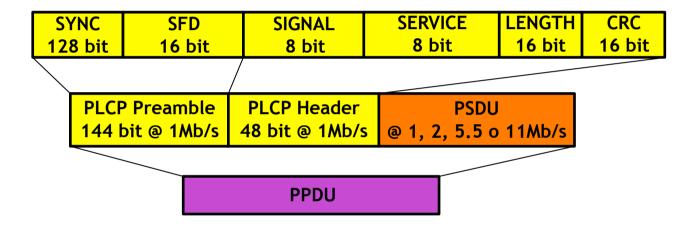
- □ ISM 2.4GHz band spans range [2400-2483.5]MHz worldwide
 - Availability subject to country regulations
 - E.g., USA [1-11], Italy [1-13], Japan [1-14] (but 14 only 11b!)
- ☐ Standard: 13 channels (5 MHz spacing) + channel 14
 - ch_N @ [2407 + 5 * N]MHz, 1≤N≤13; very busy ⊗
 - ch₁₄ @ 2484MHz; not used outside Japan ©
- ☐ How many orthogonal channels? Remember 20MHz width

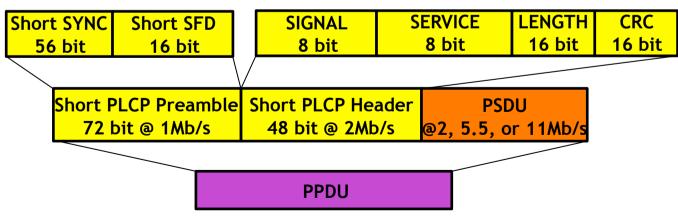

Wireless LAN Standard

802.11bg Physical Layer analysis


IEEE 802.11bg: a frame unit (no MAC yet)

- ☐ Each frame preceded by PLCP preamble
 - Physical Layer Convergence Procedure
- ☐ PLCP helps the receiver
 - Understanding a transmission is beginning (energy raise)
 - Knowing which data-rate encoding is used for data and its length
 - Synchronizing the decoding subsystem
- □ PLCPs of 11b and 11g differ
 - Let's check!


- Direct Sequence Spread Spectrum modulations
 - Each bit is "spread" to a sequence of 11 chips (Barker train)
 - A sequence of 11 "chips" transmitted repeatedly by shifting phase
 - Phase shift of consecutive chip trains encode the PPDU



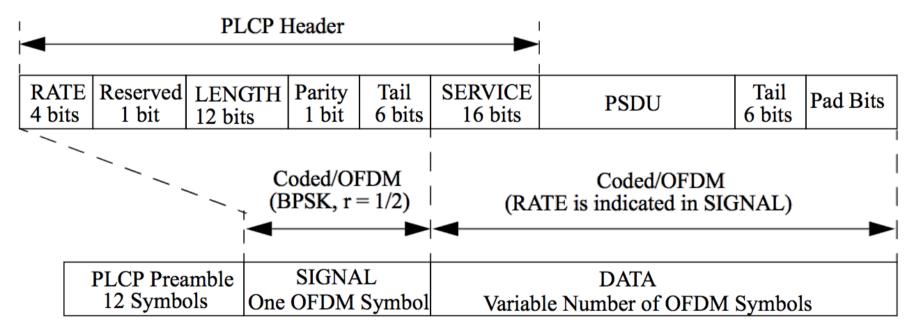
☐ Two possible PLCP format:

Long PLCP is 192µs

Short PLCP is $96\mu s$ For 2, 5.5, 11Mb/s

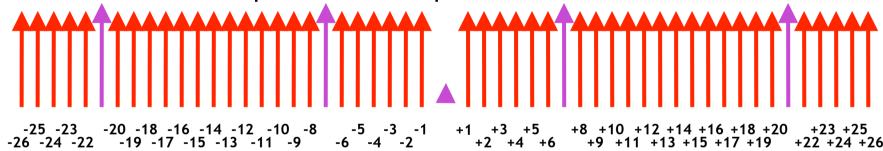
☐ PPDU format is very inefficient!

☐ E.g.: Acknowledgement (shortest frame), 14byte = 112bit

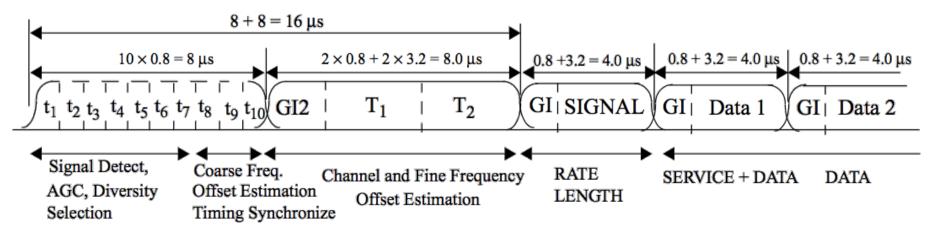

- Preamble PSDU
- @1Mb/s, $192\mu s$ $112\mu s$
- @2Mb/s, $192\mu s$ (or 96) $56\mu s$
- @5.5Mb/s, $192\mu s$ (or 96)
- @11Mb/s, $192\mu s$ (or 96)

21μs 11μs

PLCP much longer than actual data!


□ 802.11g: new PLCP, very short

PLCP is 20µs


- Orthogonal Frequency Division Multiplexing (6Mb/s)
 - PPDU is divided in groups of 24 bits (three bytes)
 - Each group of 24 is expanded to 48 bit (FEC)
 - Each bit of these 48 weights a specific carrier (with -1 for 0, +1 for 1)
 - Five additional pilot carriers pink inserted

- Time signal computed by running ifft of the carrier weights
- Each group takes 4μs, call this "OFDM symbol"
- ☐ Higher data rates map more bits to each carrier/symbol

- □ 802.11g: frame includes
 - PLCP Preamble made of 10 short symbols $(8\mu s)$ + 2 long ones $(8\mu s)$
 - PLCP Header made of
 - SIGNAL field in its own symbol ($4\mu s$, PSDU length+rate)
 - SERVICE field, first 16 bits of first data symbol
 - PSDU made of symbols, each one carrying N bits, N depends on Rate
 - PSDU terminate with CRC32 and at least 6 padding bits

- □ 802.11g: data payload
 - Bit expanded by convolutional encoder for FEC, R = [1/2, 2/3, 3/4]
 - Groups of N_{CBPS} (Coded Bit Per Symbol) or N_{DBPS} (Data Bit Per Symbol)
 - Each subcarrier transport N_{BPSC} bit (Bit Per SubCarrier)

Modulation	R	N_{BPSC}	N _{CBPS}	N_{DBPS}	Data rate
BPSK	1/2	1	48	24	6
BPSK	3/4	1	48	36	9
QPSK	1/2	2	96	48	12
QPSK	3/4	2	96	72	18
16-QAM	1/2	4	192	96	24
16-QAM	3/4	4	192	144	36
64-QAM	2/3	6	288	192	48
64-QAM	3/4	6	288	216	54

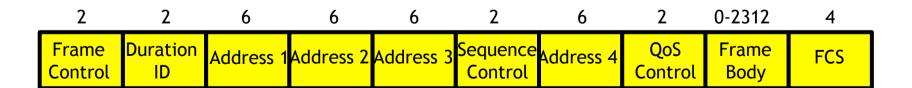
IEEE 802.11g: frame format/6

☐ E.g.: Acknowledgement, 14byte = 112bit

 \square PLCP: $20\mu s$

 \square DATA_{PSDU}: 16b(SERVICE)+112b(PSDU)+6b(tail_{min})=134b

Data rate	PLCP	N _{DBPS}	bit	symbol	ΔΤ	Extension	Total
6	20 <i>μ</i> s	24	134	6	24 <i>μ</i> s	6μs	50 <i>μ</i> s
9	20 <i>μ</i> s	36	134	4	16 <i>μ</i> s	6μs	42 <i>μ</i> s
12	20μs	48	134	3	12 <i>μ</i> s	6μs	38 <i>µs</i>
18	20 <i>μ</i> s	72	134	2	8μs	6μs	34 <i>µs</i>
24	20μs	96	134	2	8µs	6μs	34 <i>µs</i>
36	20 <i>μ</i> s	144	134	1	4μs	6μs	30 <i>μ</i> s
48	20μs	192	134	1	4μs	6μs	30 <i>μ</i> s
54	20 <i>μ</i> s	216	134	1	4μs	6µs	30μs


Wireless LAN Standard

802.11bg Frame format analysis (@ layer 2)

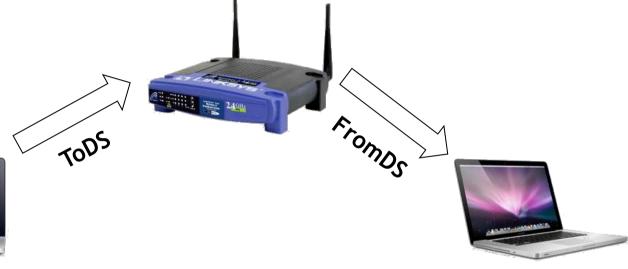
THE STUDIOR WATER AND THE STUDIOR WATER AND

IEEE 802.11: Frame types

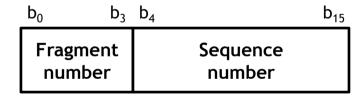
- Three types of Mac Protocol Data Unit (MPDU):
 - Management, e.g. Association Request/Response, Beacon, (De)Auth
 - Network/BSS Advertisement, BSS Join, Authentication etc
 - Control, e.g. ACK, RTS, CTS, Poll, etc
 - For channel access (RTS, CTS), positive frame acknowledgment
 - Data: Plain data + QoS Data, etc.
 - Frames with user data
 - MPDU fields: depend on frame type!

☐ Frame Control:

- Protocol version, only 0 today
- Type and Subtype encode frame type + subtype
- ToDS: frame is for Distribution System; FromDS frame is from DS
 - If both set to 1, frame is transported by a Wireless DS
- More: announce other fragments are coming (PSDU is fragmented)
- Retry: help rx'er understanding this is a retransmission
- {Pwr Mgt, More Data} deal with power management, save
- Protected: announce Frame Body is encrypted


b_0	b_1	b_2	b_3	b_4	b_5	b_6	b ₇	b ₈	b_9	b ₁₀	b ₁₁	b ₁₂	b ₁₃	b ₁₄	b ₁₅
Proto Vers		Fra Ty _l	me pe		Fra Subt			To DS	From DS	More Frag	Retry	Pwr Mgt	More Data	Crypt	Order

- ☐ Duration/ID
 - Meaning depends on MPDU type
 - Data: number of μs after frame end during which medium is reserved
 - Used by Virtual Carrier Sense, set the Network Allocation Vector (NAV)
- ☐ Address fields: they depends on ToDS/FromDS fields:
 - BSSID: Basic Service Set IDentification
 - Address of the AP
 - DA: Destination Address, "final destination"
 - RA: Receiver Address, immediate frame destination
 - SA: Source Address, who has generated this frame
 - TA: Transmitter Address, who has forwarded this frame


☐ Example:

To DS	From DS	Address 1	Address 2	Address 3	Address 4
0	0	RA = DA	TA = SA	BSSID	N/A
0	1	RA = DA	TA = BSSID	SA	N/A
1	0	RA = BSSID	TA = SA	DA	N/A
1	1	RA	TA	DA	SA

- ☐ Sequence Control:
 - Fragment number, 4 bits
 - For fragmented PSDU, it's the number of this fragment
 - Sequence Number, 12 bits, unique for PSDU
 - Identify the PSDU (used by rx'er to avoid accepting same frame > once)

- ☐ QoS Control: identify Traffic Category (optional field)
- ☐ FCS: CRC/32 Frame Check Sequence protecting the PSDU

IEEE 802.11: PSDU example - Data Frame

- ☐ IP packet, no QoS, from STA to AP (ToDS): Data frame
 - Logical Link Control (LLC) encapsulation is used
 - 8 bytes before IP: 0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00, 0x08, 0x00
 - Type: Data frame
 - SubType: $0 \Rightarrow Byte#0 := 0x08$
 - ToDS \Rightarrow Byte#1 := 0x01

 b_7 Protocol Frame Frame Version Subtype Type b_{12} b b_{10} b_{11} b_{13} b_{15} Pwr More From More To Crypt Order DS

Seauence

ethertype

- Duration: time to tx an ACK + SIFS
- Address: it's a ToDS frame, fill the three address fields
- SeqCTRL: seq. no:=33 ⇒ SeqCTRL:=0x0210

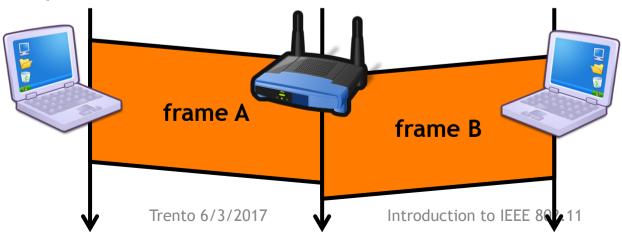
	90	. 564	.0. 55	, 5040		O/(OZ 10	Hulliber		number	
2	2	6	6	6	2		8		N	<u> </u>
08 01	3A 01	BSSID	SA	DA	10 02	AA AA 03 0	0 00 00 0	8 00	IP	FCS

30 Trento 6/3/2017 Introduction to IEEE 802.1

IEEE 802.11: PSDU example - Data Frame

- ☐ Example with WireShark
 - Open a trace file
 - Show Beacons
 - Show Data, retry etc

Wireless LAN Standard


The Basic Access Scheme

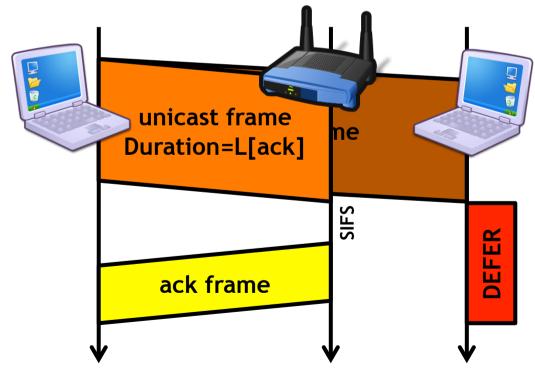
Distributed Coordination Function (DCF)

Transmissions in a Broadcast Medium

- ☐ If two stations transmit at the same time
 - Receiver(s) cannot decode packets (collision)
 - Transmitters do not know whether data was received
- 802.11 standard introduces
 - Slotted medium
 - Positive Acknowledgment with Retransmission
 - Carrier Sense Multiple Access/Collision Avoidance

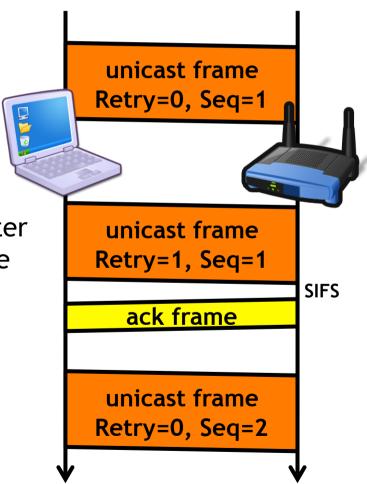
Time Slot

- Time is divided into intervals, called slots
 - Working with slot (tx may start with slot) reduces uncertainty
- ☐ A Slot is the system unit time
 - 802.11b Slot Time is 20μs, 11g is 9μs
- ☐ Time synchronized by Beacons transmitted by the BSS AP
 - Each Beacon carries a 64bit time value (1μs granularity)
 - Stations in the BSS copy beacon time to their clock registers
 - Skews due to poor clock design periodically corrected
- ☐ A BSS is a synchronous system!!


InterFrame Space (IFS)

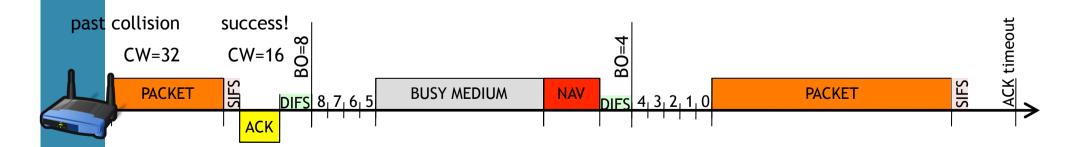
- ☐ Time interval between consecutive transmissions
- ☐ Different IFSs allow different access priorities
 - Short IFS: separate transmissions belonging to the same "dialogue"
 - SIFS in 11bg it's 10μs
 - Point Coordination IFS: used by the Point Coordinator
 - PIFS is SIFS + Slot Time
 - Distributed IFS: waited by stations when contending for a free channel
 - DIFS is SIFS + 2 * Slot Time
 - Extended IFS: waited by stations when receiving a bad frame
 - EIFS is SIFS + TxTime[AckFrame] + DIFS

Positive Acknowledgment & Retransmissions

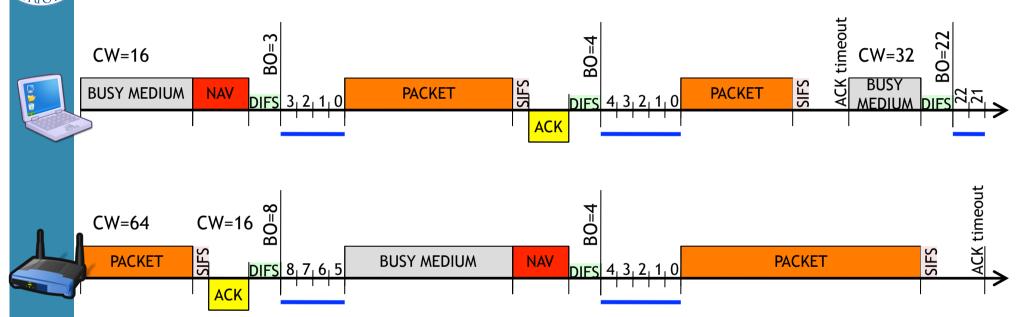

- Received unicast frame must be acknowledged
 - Other nodes defer transmissions by using the received "Duration"

Positive Acknowledgment & Retransmissions/2

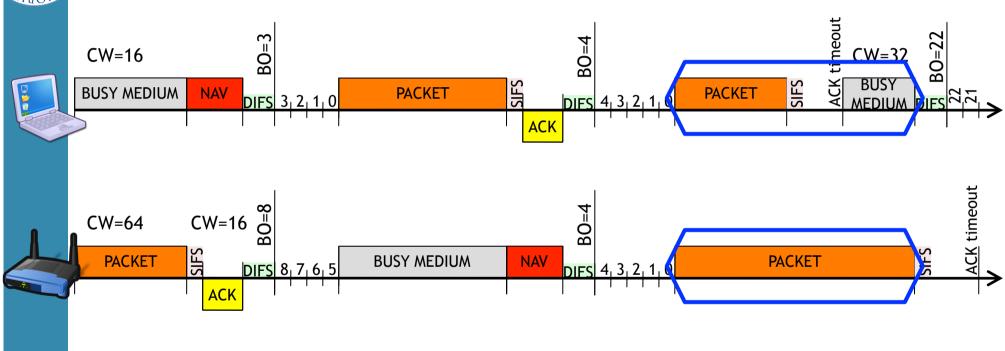
- ☐ If no acknowledgment coming from receiver
 - Retransmit the frame with Retry bit set and same sequence counter
- ☐ When acknowledgment received
 - Increase the sequence counter and switch to the next frame

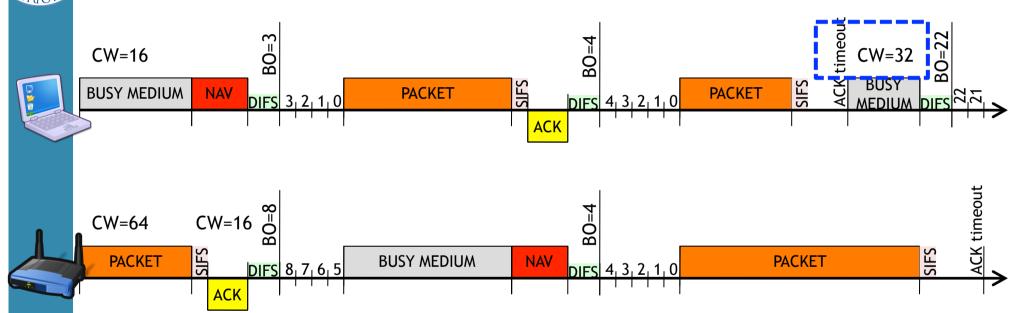


Carrier Sense Multiple Access/ Collision Avoidance

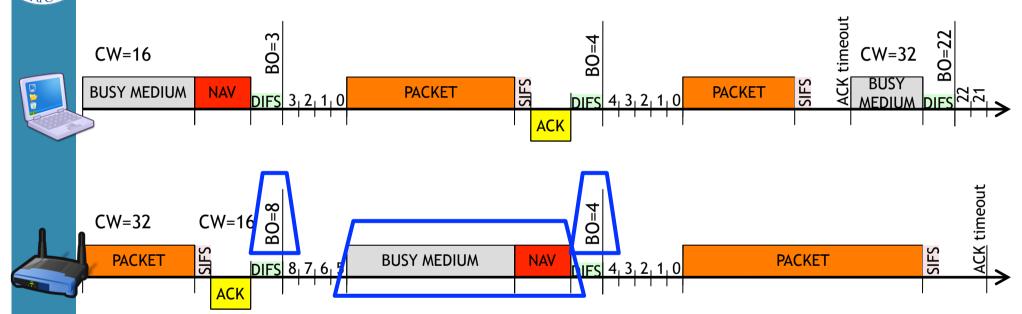

- ☐ Apart from slot synchronization
 - No other explicit coordination among stations
- ☐ To avoid repeated collisions
 - Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA)
 - Given free-space attenuation, /Collision Detection is not feasible!
- ☐ CSMA/CA Basic
 - Stations willing to transmit have to contend for channel access
 - A station repeats the contention procedure for every (re)transmission

- ☐ Each station keeps a Contention Window (CW) parameter
 - 1. At the end of the previous transmission attempt
 - If collision (no ack), double CW, otherwise reset to CW_{min}
 - Extract Backoff value (BO) ∈ U[0, CW 1]
 - 2. "Monitor channel free for t > DIFS"
 - 3. Backoff stage: decrement BO to zero
 - Backoff: if medium free, decrement BO at every SLOT
 - When medium busy ⇒ Suspend: BO freezed & goto 2
 - If BCKOFF == 0 ⇒ Transmit!


Backoff count-down, channel idle


CW reset after success

Collision!


CW doubling after failure

Backoff Extraction

Backoff Freeze, channel busy

CSMA/CA, Exponential Backoff rule

- ☐ BCKOFF value is computed after every tx attempt
 - BCKOFF taken from [0, 1, ..., CW-1] with uniform distribution
- ☐ Contention Window (CW) refreshed
 - CW = 2 * CW if after tx attempt there is a collision
 - Up to CW_{max}, then stay with CW_{max}
 - CW = CW_{min} if after tx attempt, tx was acked by acknowledgment
- ☐ Standard values:
 - $CW_{min} = 16/32$, $CW_{max} = 1024$
- ☐ For tx a packet that requires ACK
 - Repeat access procedure up to MAX_{times} (e.g., 7), then discard packet
- ☐ This procedure guarantees network works correctly!!

CSMA/CA, pseudo-code

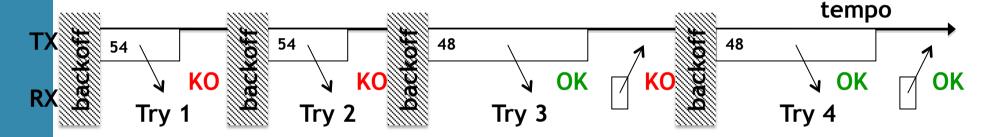
☐ Neglecting initializations:

procedura di trasmissione

```
while true do
        wait for packet
        wait for channel idle for DIFS
        while channel is idle do ←
                 BCKOFF--
                 if BCKOFF == 0 then
                          send packet
                          wait for acknowledgement or timeout
                          if ack received then
                                  reset CW
                                  remove packet
                          else
                                  grow CW
                          end if
                          BCKOFF = extract CW
                          leave do _____
                 end fi
        end do
end do
```


Wireless LAN Standard

Rate control algorithm (super-quick)


IEEE 802.11bg: rate choice

- How to choose the rate is not specified by the standard
 - Rate Controller algorithm: RC
- ☐ RCs use feedback based techniques
- ☐ E.g. Minstrel algorithm, the default today in Linux kernel
 - Count total frames transmitted PER every rate, assess success probability
 - Rate that has best success delivery ratio is the winner
 - Periodically (every N frames) send a frame at a "look-around" rate
 - Constantly scan the entire rate set
 - Rely on frames that require ACK, by counting:
 - Number of attempts per packet
 - Failed rate, success rate Trento 6/3/2017

EEE 802.11: rate choice/2

☐ Example: UDP packet

- RC set up these rates: $[54\text{Mb/s}^{\{1,2\}},48\text{Mb/s}^{\{3,4\}},12\text{Mb/s}^{\{5\}},1\text{Mb/s}^{\{6,7\}}]$

- At the end of this packet, RC refreshes its table...

Rate	Success	Failure		Rate	Success	Failure
54	2812/3004 (93%)	192/3004 (7%)		54	2812/3006 (93%)	194/3006 (7%)
48	408/507 (80%)	99/507 (20%)	$\overline{}$	48	409/509 (80%)	100/509 (20%)
36	102/402 (25%)	300/402 (75%)		36	102/402 (25%)	300/402 (75%)

• Don't change decision (not now ©)

Bibliography

- ☐ [1] IEEE 802.11-2007, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, June 2007.
- ☐ [2] Tutorial on 802.11n from Cisco:

http://www.wireshark.ch/download/ Cisco_PSE_Day_2009.pdf

□ [3] G. Bianchi, "Performance analysis of the IEEE 802.11 distributed coordination function". IEEE Journal on Selected Areas in Communications, 18(3), pp. 535-547, 2000.