
OpenFWWF
RX & TX data paths

A glimpse into the
Linux Kernel Wireless Code

Part 3

Firmware in brief

•  Firmware seems really complex to understand !
–  Assembly language

•  CPU registers: 64 registers [r0, r1, …, r63]
•  SHM memory: 4KB of 16bits words addressable as [0x000] -> [0x7FF]
•  HW registers: spr000, spr001, …, spr1FF

–  Use #define macro to ease understanding
•  #define CUR_CONTENTION_WIN r8
•  #define SPR_RXE_FRAMELEN spr00c
•  #define SHM_RXHDR SHM(0xA88)

–  SHM(.) is a macro as well that divides by 2
–  Assignments:

•  Immediate mov 0xABBA, r0; // load 0xABBA in r0
•  Memory direct mov [0x0013], r0; // load 16bit @ 0x0026 (LE!)

Trento 13/3/2017 From kernel to firmware Slide 43

Firmware in brief/2

•  Value manipulation:
–  Arithmetic:

•  Sum: add r1, r2, r3; // r3 = r1 + r2
•  Subtraction: sub r2, r1, r3; // r3 = r2 - r1

–  Logical:
•  Xor: xor r1, r2, r3; // r3 = r1 ^ r2

–  Shift:
•  Shift left: sl r1, 0x3, r3; // r3 = r1 << 3

•  Pay attention:
–  In 3 operands instruction, immediate value in range [0..0x7FF]
–  Value is sign extended to 16bits

Trento 13/3/2017 From kernel to firmware Slide 44

Firmware in brief/3

•  Code flow execution controlled by using jumps
–  Simple jumps, comparisons

•  Jump if equal: je r2, r5, loop; // jump if r2 == r5
•  Jump if less: jl r2, r5, exit; // jump if r2 < r5 (unsigned)

–  Condition register jumps: jump on selected CR (condition registers)
•  on plcp end: jext COND_RX_PLCP, rx_plcp;

•  on rx end: jext COND_RX_COMPLETE, rx_complete;

•  on good frame: jext COND_RX_FCS_GOOD, frame_ok;

•  unconditionally: jext COND_TRUE, loop;
–  A check can also clean a condition, e.g.,

•  jext EOI(COND_RX_PLCP), rx_plcp; // clean CR bit before jump
–  Call a code subsection, save return value in link-registers (lr):

•  call lr0, push_frame; // return with ret lr0, lr0;

Trento 13/3/2017 From kernel to firmware Slide 45

Firmware in brief/4

•  OpenFWWF is today ~ 1000 lines of code
–  Not possible to analyze in a single lesson
–  We will analyze only some parts

•  A simple exercise:
–  Analyze quickly the receiver section
–  Propose changes to implement a jammer

•  When receives packets from a given STA, jams noise!

AP

JAMMER

STA pkt pkt

jam

ack

Trento 13/3/2017 From kernel to firmware Slide 46

RX code made easy

•  During reception
–  CR RX_PLCP set when PLCP is completely received
–  CR COND_RX_BADPLCP set if PLCP CRC went bad
–  SPR_RXE_FRAMELEN hold the number of already received bytes
–  First 64B of packet are copied starting at SHM_RXHEADER = SHM(0xA08)

•  First 6B hold the PLCP
–  CR COND_RX_COMPLETE set when packet is ready

•  We can have a look at the code flow for a data packet
–  rx_plcp: checks it’s a data packet
–  rx_data_plus: checks packet is longer than 0x1C = 6(PLCP)B + 22(MAC)B
–  send_response: copy src mac address to ACK addr1, set state to TX_ACK
–  rx_complete: schedule ACK transmission

Trento 13/3/2017 From kernel to firmware Slide 47

good

RX code path
rx_plcp

rx_ack

send_CTRL_
frame_to_host

RX
complete

control ack

management

rx_beacon

beacon
rx_data_plus

data

send_response_
If_ra_matches

RX check
promisc

send_response

match

no match

send_frame_
to_host

FCS good

rx_badplcp
bad

Wait
enough
header
bytes

Prepare
ACK in

template
RAM

WAIT
packet end

Fill HW
header for

kernel,
raise IRQ

Trento 13/3/2017 From kernel to firmware Slide 48

JAM

Let’s hack and do jamming

•  During reception CPU keeps on running
–  Detect end of PLCP
–  May wait for a given number of bytes received
–  May prepare a response frame (ACK)
–  Wait for end of reception
–  May schedule response frame transmission after a while

now

PL
C
P

[N-1…0] [M-1…N]

PLCP received WAIT first N bytes Received: analyze header
If from jam target setup jam
Wait for packet end Reception complete

JAM READY!

Wait N microseconds TX JAM

Trento 13/3/2017 From kernel to firmware Slide 49

•  Disturbing a station when sending data
–  Jammer recognizes tx’ed data and sends fake ACK

•  Maybe (for testing) jamming all packets is too much
–  Selected packets?

Let’s hack and do jamming/2

TX station

AP DATA1

ACK

SIFS
JAMMER

JAM

Trento 13/3/2017 From kernel to firmware Slide 50

Let’s hack and do jamming/3

•  If first byte of a packet are copied to SHM
•  If we have ways of displaying SHM

–  Could we find evidence of received packets?

•  Useful tool
–  $: readshm
–  Display shared memory

•  Run this experiment: run traffic from the STA to AP
–  On AP dump the SHM: locate the UDP packet
–  Fix the rate on STA: how do the first 6 bytes change?

Trento 13/3/2017 From kernel to firmware Slide 51

Let’s hack and do jamming/4

•  Shared memory appears like this

0x0A00: 0000 0000 0000 0000 CCBF 0200 0000 0801
0x0A10: 0400 0014 A442 958D 0014 A442 958D 0013 B.....B....
0x0A20: D4BB 2CBF C006 AAAA 0300 0000 0800 4500 ..,...........E.
0x0A30: 05DA 3E7E 4000 4011 751B C0A8 0028 C0A8 ..>~@.@.u....(..

0x0A40: 0001 CB86 0BB8 05C6 0F6E 0000 459E 531C n..E.S.
0x0A50: ADA9 0000 84FD 0000 0000 0000 0001 0000
0x0A60: 0BB8 0000 0000 0337 F980 FFFE 7960 3637 7....y`67
0x0A70: 3839 3031 3233 3435 3637 3839 3031 3233 8901234567890123
0x0A80: 3435 3637 3839 3031 5100 0000 0600 2A50 45678901Q.....*P
0x0A90: E54F 0000 0000 0000 B4FB A202 0000 0000 .O..............

Trento 13/3/2017 From kernel to firmware Slide 52

Let’s hack and do jamming/4

•  Shared memory appears like this

0x0A00: 0000 0000 0000 0000 CCBF 0200 0000 0801
0x0A10: 0400 0014 A442 958D 0014 A442 958D 0013 B.....B....
0x0A20: D4BB 2CBF C006 AAAA 0300 0000 0800 4500 ..,...........E.
0x0A30: 05DA 3E7E 4000 4011 751B C0A8 0028 C0A8 ..>~@.@.u....(..

0x0A40: 0001 CB86 0BB8 05C6 0F6E 0000 459E 531C n..E.S.
0x0A50: ADA9 0000 84FD 0000 0000 0000 0001 0000
0x0A60: 0BB8 0000 0000 0337 F980 FFFE 7960 3637 7....y`67
0x0A70: 3839 3031 3233 3435 3637 3839 3031 3233 8901234567890123
0x0A80: 3435 3637 3839 3031 5100 0000 0600 2A50 45678901Q.....*P
0x0A90: E54F 0000 0000 0000 B4FB A202 0000 0000 .O..............

•  What should we check if we want to jam only UDP frame to port 3000?
•  We have also to wait for at least …. Bytes have been received, right?

Trento 13/3/2017 From kernel to firmware Slide 53

Let’s hack and do jamming/5

•  Legacy rx_data_plus:
rx_data_plus:
 jext COND_RX_COMPLETE, end_rx_data_plus
 jl SPR_RXE_FRAMELEN, 0x01C,rx_data_plus
end_rx_data_plus:
 jl SPR_RXE_FRAMELEN, 0x01C, rx_check_promisc
 jnext COND_RX_RAMATCH, rx_ra_dont_match
 jext COND_TRUE, send_response

•  What we change?
–  Change the frame length
–  Add filter
–  If frame match filter, then “send_response” and remember

somewhere!

Trento 13/3/2017 From kernel to firmware Slide 54

Let’s hack and do jamming/6

•  Legacy rx_complete
rx_complete:

[cut]
frame_successfully_received:
 jext COND_RX_FIFOFULL, rx_fifo_overflow
 jnext COND_NEED_RESPONSEFR, check_frame_subtype
need_regular_ack:
 je [SHM_CURMOD], 0x001, ofdm_modulation

•  What we change?
–  If we had remembered somewhere this is to jam

•  JAM IT!, schedule the frame anyway

Trento 13/3/2017 From kernel to firmware Slide 55

JAM code

•  To switch to a different firmware
–  Look at /lib/firmware
–  Link the desired firmware release as “b43”
–  Remove b43 module, reload and bring back the network

up
$: rmmod b43 . . .

•  How to test JAM code? “iperf” performance tool
•  On AP run in server mode (receiver)

$: iperf -s -u -p 3000 -i 1

•  On STA run in client mode (transmit)
$: iperf -c IP_OF_AP -u -p 3000 -i 1 -t 10

Trento 13/3/2017 From kernel to firmware Slide 56

TX made easy

•  Packets are prepared by the kernel
– Fill all packet bytes (e.g., 802.11 header)
– Choose hw agnostic device properties

•  Tx power to avoid energy wasting
•  Packet rate: rate control algorithm (minstrel)

– A driver translates everything into hw specific
•  b43: rate encoded in PLCP (first 6B)
•  b43: append a fw-header at packet head

–  Firmware will setup hw according to these values

Trento 13/3/2017 From kernel to firmware Slide 57

TX made easy/2

•  Kernel (follows)
–  b43: send packet data (+hw info) through DMA

•  firmware:
–  Continuous loop, when no receiving

•  If IDLE, check if packet in FIFO (comes from DMA)
•  If packet does not need ACK, TX,report and exit
•  If packet needs ACK, wait ACK timeout
•  If ACK timeout expired:

–  if ACK RXed, report to kernel, exit
–  If ACK not RXed, setup backoff, try again
–  If too much TX attempts

»  remove packet from FIFO, report to kernel, exit

Trento 13/3/2017 From kernel to firmware Slide 58

TX made easy/3

1

Device TX FIFO

New packet in FIFO

TX attempt = 0

1

TX ANT

TX STATUS FIFO

Packet corrupt
No ACK back TX attempt = 1 Ti

m
eo

ut
!

1
ACK

Packet OK
TX ACK back

2

RX ANT

ACK ok
Report to
kernel

S
ta

tu
s

N
=

2

IRQ wake status
handler in kernel

Second attempt:
increase backoff

Trento 13/3/2017 From kernel to firmware Slide 59

TX made easy/4

•  Summary

•  FW reports to kernel the number of attemps
–  Kernel feeds the rate control algo

–  A rate for the next packet is chosen

t backoff

AP

DATA DATA

A
C
K

DATA
backoff

A
C
K

COLLISION COLLISION OK

Trento 13/3/2017 From kernel to firmware Slide 60

TX made easy/5

•  Currently “minstrel” is the default RC algo

–  At random intervals tries all rates

–  Builds a tables with success “rate” for each “rate”

–  In the short term it selects the best rate

–  How to checks this table from userspace?

•  DEBUGFS ☺

•  Take a look at folder

/sys/kernel/debug/ieee80211/phyN/

Trento 13/3/2017 From kernel to firmware Slide 61

TX made easy: exercise

•  Firmware: backoff entered if ack is not rx
–  Simple experiment

•  Two STAs joined to the same BSS
•  iperf on both STAs to the AP
•  They should share the channel

–  What happen if we hack one station fw?
–  Let’s try…

•  TX path really complex, skip
•  But at source top we have a few “_CW” values

Trento 13/3/2017 From kernel to firmware Slide 62

