OpenFWWF
RX & TX data paths

A glimpse into the
Linux Kernel Wireless Code

Part 3



4 Firmware in brief

* Firmware seems really complex to understand ®

— Assembly language
 CPU registers: 64 registers [r0, r1, ..., r63]
« SHM memory: 4KB of 16bits words addressable as [0x000] -> [Ox7FF]
 HW registers: spr000, spr001, ..., spr1FF

— Use #define macro to ease understanding

e #define CUR_CONTENTION WIN r8

e #define SPR_RXE FRAMELEN spr00c

e #define SHM RXHDR SHM (0xA88)
— SHM(.) IS a macro as well that divides by 2

— Assignments:
* Immediate mov OxABBA, r0O; /I load OXABBA in r0
* Memory direct mov [0x0013], rO; // load 16bit @ 0x0026 (LE!)

Slide 43 Trento 13/3/2017 From kernel to firmware



« Value manipulation:

— Arithmetic:

e Sum: add

« Subtraction:  sub
— Logical:

« Xor: XOor
— Shift:

 Shift left: sl

« Pay attention:

4 Firmware in brief/2

rl, r2, r3;

r2, rl, r3;

rl, r2, r3;

rl,

0x3, r3;

[lr3=r1+r12
[[r3=r2-r1
r3=r1"r2
lr3=r1<<3

— In 3 operands instruction, immediate value in range [0..0x7FF]
— Value is sign extended to 16bits

Slide 44

Trento 13/3/2017

From kernel to firmware



Firmware in brief/3

« Code flow execution controlled by using jumps
— Simple jumps, comparisons
 Jump if equal: je r2, r5, loop; /ljumpifr2==r5
« Jumpifless: 1 r2, r5, exit; //jumpifr2 <r5 (unsigned)
— Condition register jumps: jump on selected CR (condition registers)
e onplcpend: jext COND_RX PLCP, rx plcp;
* on rx end: jext COND_RX COMPLETE, rx complete;
* on good frame: jext COND RX FCS GOOD, frame ok;
« unconditionally: jext COND TRUE, loop;
— A check can also clean a condition, e.g.,
e jext EOI(COND RX PLCP), rx plcp; //clean CR bit before jump
— Call a code subsection, save return value in link-registers (Ir):
e call 1r0, push frame; /] return with ret 1r0, 1ro0;

Slide 45 Trento 13/3/2017 From kernel to firmware



4 Firmware in brief/4

 OpenFWWEF is today ~ 1000 lines of code

— Not possible to analyze in a single lesson
— We will analyze only some parts

* A simple exercise:
— Analyze quickly the receiver section

— Propose changes to implement a jammer
* When receives packets from a given STA, jams noise!

o ‘éhiagg? 5%;; AP

 jam

JAMMER

Slide 46 Trento 13/3/2017 From kernel to firmware




4 RX code made easy

During reception
— CR RX_PLCP set when PLCP is completely received
— CR COND_RX BADPLCP set if PLCP CRC went bad
— SPR_RXE_FRAMELEN hold the number of already received bytes

— First 64B of packet are copied starting at suM_RXHEADER = SHM(0xA08)
» First 6B hold the PLCP

— CR COND_RX COMPLETE set when packet is ready

We can have a look at the code flow for a data packet
— rx_plcp: checks it's a data packet
— rx_data_plus: checks packet is longer than 0x1C = 6(PLCP)B + 22(MAC)B
— send_response: copy src mac address to ACK addr1, set state to TX ACK
— rx_complete: schedule ACK transmission

Slide 47 Trento 13/3/2017 From kernel to firmware



RX code path

RAM

Slide 48 Trento 13/3/2017

bad
rx_plcp
good
data control
Wait
enough t
headger rx_data_plus managemen
bytes beacon
rx_beacon
send_response__ RX check V
If ra_matches ;maten  Promisc
match
Prepare WAIT
ACK in packet end RX
template send_response complete

rx_badplcp

ack

rx_ack

send CTRL_
frame_to_host

Fill HW
header for

kernel,
raise IRQ

FCS good gend frame_
to_host

From kernel to firmware



-4 Let's hack and do jamming

* During reception CPU keeps on running
— Detect end of PLCP
— May wait for a given number of bytes received
— May prepare a response frame (ACK)
— Wait for end of reception

— May schedule response frame transmission after a while
now

PLCRH

[M-1..N]  [N-1...0]

JAM JAM READY!

Slide 49 Trento 13/3/2017 From kernel to firmware



54 Let’s hack and do jamming/2

» Disturbing a station when sending data
— Jammer recognizes tx'ed data and sends fake ACK

« Maybe (for testing) jamming all packets is too much
— Selected packets?

TX station

JAMMER |~ Al AP

SIFS

A2 CK

Slide 50 Trento 13/3/2017 From kernel to firmware



Let's hack and do jamming/3

If first byte of a packet are copied to SHM
If we have ways of displaying SHM

— Could we find evidence of received packets?
Useful tool

— $: readshm

— Display shared memory

Run this experiment: run traffic from the STA to AP
— On AP dump the SHM: locate the UDP packet
— Fix the rate on STA: how do the first 6 bytes change?

Slide 51 Trento 13/3/2017 From kernel to firmware



Let’'s hack and do jamming/4

Shared memory appears like this

0x0A00: 0000 0000 0000 0000 CCBF 0200 0000 0801  ..ceeeeeeeconnns

0x0A10: 0400 0014 A442 958D 0014 A442 958D 0013 ..... B..... B....
0x0A20: D4BB 2CBF C006 AAAA 0300 0000 0800 4500 cogessescssass E.
0x0A30: O5DA 3E7E 4000 4011 751B COA8 0028 COAS8 ..>~@.@.u.e.. (..
0x0A40: 0001 CcB86 0BB8 05C6 OF6E 0000 459E 531C ......... n..E.S.
0x0A50: ADA9 0000 84FD 0000 0000 0000 0001 0000  c.ceeeeeeeeoannn
0x0A60: OBB8 0000 0000 0337 F980 FFFE 7960 3637 ....... 7ee..y 67
0x0A70: 3839 3031 3233 3435 3637 3839 3031 3233 8901234567890123
0x0A80: 3435 3637 3839 3031 5100 0000 0600 2A50 45678901Q..... *P

0x0A90: E54F 0000 0000 0000 B4FB A202 0000 0000 B

Slide 52 Trento 13/3/2017 From kernel to firmware



0x0A0Q00:
0x0A10:
0x0A20:
0x0A30:
0x0A40:
0x0A50:
0x0A60:
0x0A70:
0x0A80:
0x0A90:

0000
0400
D4BB
05DA
0001
ADA9
OBBS
3839
3435
E54F

0000
0014
2CBF
3E7E
CB86
0000
0000
3031
3637
0000

0000
A442
C006
4000
0BBS
84FD
0000
3233
3839
0000

Shared memory appears like this

0000§CCBF 0200 0000‘0801

958D
AAAA
4011
05C6
0000
0337
3435
3031
0000

0014
0300
751B
OF6E
0000
F980
3637
5100
B4FB

A442 958D
0000 0800
COA8 0028
0000 459E
0000 0001
FFFE 7960
3839 3031
0000 0600
A202 0000

0013
4500
COAS8
531C
0000
3637
3233
2A50
0000

Let’'s hack and do jamming/4

....... 7ee..y 67
8901234567890123

« What should we check if we want to jam only UDP frame to port 30007?
 We have also to wait for at least .... Bytes have been received, right?

Slide 53

Trento 13/3/2017

From kernel to firmware



{ Let’'s hack and do jamming/5

* Legacy rx_data_plus:

rx data plus:

jext COND RX COMPLETE, end rx data plus
j1 SPR_RXE FRAMELEN, 0x01C,rx data plus
end rx data plus:
jl SPR _RXE FRAMELEN, 0x01C, rx check promisc
jnext COND RX RAMATCH, rx ra dont match
jext COND TRUE, send response

 What we change?

— Change the frame length

— Add filter

— If frame match filter, then “send_response” and remember
somewhere!

Slide 54 Trento 13/3/2017 From kernel to firmware



{Let's hack and do jamming/6

* Legacy rx_complete
rx complete:
[cut]
frame successfully received:
jext COND RX FIFOFULL, rx fifo overflow
jnext COND_ NEED RESPONSEFR, check frame subtype
need reqular ack:
je [SHM CURMOD], 0x001, ofdm modulation

 What we change?

— |f we had remembered somewhere this is to jam
« JAM IT!, schedule the frame anyway

Slide 55 Trento 13/3/2017 From kernel to firmware



To switch to a different firmware
— Look at /lib/firmware
— Link the desired firmware release as “b43”

— Remove b43 module, reload and bring back the network
up

S: rmmod b43 . . .

* How to test JAM code? “iperf’ performance tool

« On AP run in server mode (receiver)
$: iperf -s -u -p 3000 -i 1

On STA run in client mode (transmit)
$: iperf -c IP OF AP -u -p 3000 -1 1 -t 10

Slide 56 Trento 13/3/2017 From kernel to firmware



R
S A ) Y
P,
T
. — X
Al I I I lade eaS
ST
““w‘é ? /Z
> =L >
NI KJ,;,"("
O\ o

» Packets are prepared by the kernel
— Fill all packet bytes (e.g., 802.11 header)

— Choose hw agnostic device properties
« Tx power to avoid energy wasting
« Packet rate: rate control algorithm (minstrel)

— A driver translates everything into hw specific

* b43: rate encoded in PLCP (first 6B)
» b43: append a fw-header at packet head

— Firmware will setup hw according to these values

Slide 57 Trento 13/3/2017 From kernel to firmware



4 TX made easy/2

« Kernel (follows)
— b43: send packet data (+hw info) through DMA

e firmware:

— Continuous loop, when no receiving
 If IDLE, check if packet in FIFO (comes from DMA)
* |f packet does not need ACK, TX,report and exit
* |f packet needs ACK, wait ACK timeout
 |f ACK timeout expired:
— if ACK RXed, report to kernel, exit
— If ACK not RXed, setup backoff, try again

— If too much TX attempts
» remove packet from FIFO, report to kernel, exit

Slide 58 Trento 13/3/2017 From kernel to firmware



¥4 TX made easy/3

Second attempt:
increase backoff

Device TX FIFO  TXANT RXANT
_ ACK
3 —>t
New packet in FIFO GEJ" Packet €dfrupt
TX attempt =0 = L 8 ACK back
ACK ok
TX STATUS FIFO Report to

IRQ wake status

kernel '
handler in kernel

Slide 59 Trento 13/3/2017

From kernel to firmware



4 TX made easy/4

« Summary
backoff backoff t

DATA DATA DATA )

COLLISION COLLISION OK

AP O S

 FW reports to kernel the number of attemps
— Kernel feeds the rate control algo

— A rate for the next packet is chosen

Slide 60 Trento 13/3/2017 From kernel to firmware



4 TX made easy/5

« Currently “minstrel” is the default RC algo
— At random intervals tries all rates
— Builds a tables with success “rate” for each “rate”
— In the short term it selects the best rate

— How to checks this table from userspace?
- DEBUGFS ©

 Take a look at folder

/sys/kernel/debug/ieee80211/phyN/

Slide 61 Trento 13/3/2017 From kernel to firmware



)= TX made easy: exercise

 Firmware: backoff entered if ack is not rx

— Simple experiment
« Two STAs joined to the same BSS
« iperf on both STAs to the AP
* They should share the channel

— What happen if we hack one station fw?
— Let's try...
« TX path really complex, skip
» But at source top we have a few * CW” values

Slide 62 Trento 13/3/2017 From kernel to firmware



