
UNIVERSITY OF TRENTO
Dipartimento di Ingegneria e Scienza dell’Informazione
Laboratory of Nomadic Communications

Pagina 1/5
Copyright © 2017 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

	
Exercise:	playing	with	transmission	engine,	Contention	Windows	(CW)	and	Transmit	&	
Modify	Engine	
1. Exercise	goals	
After	this	exercise	students	should	understand	the	role	of	the	Contention	Window	parameters	in	
channel	access	and	should	be	able	to	forge	specific	packets.	
	
2. Tutorial	steps	

1) Contention	Window	Parameters	In	the	open	firmware	only	one	queue	can	be	used	at	the	
same	time,	there	is	not	yet	support	for	Quality	of	Service.	For	this	reason	it	is	really	easy	to	
change	the	firmware	behavior	in	a	few	steps.	First	of	all	there	are	two	boundaries	(min-
max)	for	the	CW,	namely	

a. MIN_CONTENTION_WIN: value	assigned	to	CW	on	the	first	transmission	attempt;
b. MAX_CONTENTION_WIN: the	maximum	after	which	CW	is	kept	constant.

As	the	kernel	keeps	resetting	these	parameters	when	the	interface	is	working,	it	is	
mandatory	to	reload	them	in	the	main	loop	to	override	the	kernel	assignments,	e.g.,	by	
adding	the	following	two	instructions	right	after	the state_machine_start label	for	fixing	
CW	boundaries	to	specific	values	that	we	store	in	the	shared	memory:

state_machine_start:
 mov [SHM(0xFF0)], MIN_CONTENTION_WIN
 mov [SHM(0xFF2)], MAX_CONTENTION_WIN

Pay	attention	however	that	free	locations	in	shared	memory	(like	those	used	here	above)	
are	initially	set	to	zero,	this	could	lead	to	problems	if	the	two	lines	are	used	as	is:	it	is	better	
to	check	if	the	two	locations	are	different	than	zero	before	loading	the	values,	e.g.:	

state_machine_start:
 je [SHM(0xFF0)], 0, skip_min_win
 mov [SHM(0xFF0)], MIN_CONTENTION_WIN
skip_min_win:
 je [SHM(0xFF2)], 0, skip_max_win
 mov [SHM(0xFF2)], MAX_CONTENTION_WIN
skip_max_win:

It	is	now	possible	to	play	with	the	tool writeshm to	change	the	two	locations	but	remember	
that	the	values	written	in	shared	memory	must	be	nibble-swapped.	Try	writing	a	new	
value	to [SHM(0xFF0)] and	verify	that	it	is	correctly	loaded	in	register
MIN_CONTENTION_WIN(=r3) using readshm. Remember	also	that	the	window	parameters	must	
be	power-of-two	minus	1,	so 0x1F is	ok,	while 0x23 is	not.	Try	now	the	following:

$: writeshm /sys/kernel/debug/b43/phyN 0xFF0 0x7f00

UNIVERSITY OF TRENTO
Dipartimento di Ingegneria e Scienza dell’Informazione
Laboratory of Nomadic Communications

Pagina 2/5
Copyright © 2017 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

and	verify	it	worked	with readshm.

2) Playing	with	contention	windows	parameters	To	test	how	these	parameters	affect	the	
behavior	of	the	transmission	try	running	two	iperf	sessions	from	two	stations	to	the	AP.	Fix	
the	same	data	rate	so	that	the	rate	controller	could	not	affect	the	experiment:	to	this	end	
use iwconfig tool:

$: iwconfig wlan0 rate 6M

After	verifying	that	the	two	sessions	almost	share	the	same	throughput,	try	lowering	the	
minimum	contention	window	of	only	one	station:	what	happens?	And	what	if	instead	only	
the	maximum	value	is	lowered,	keeping	the	same	minimums?	
	
Finally,	reset	the	contention	window	parameters	to	the	initial	values	(0x1F and 0x3FF)	and	
fix	with iwconfig two	different	data-rate	(e.g.,	6M	and	12M).	Run	two	iperf	sessions	again:	
what	happens?	Is	it	possible	to	play	with	the	contention	window	parameter	to	force	the	
same	throughput	share?	

3) Transmission	&	Modify	Engine	(TME)	There	are	two	main	ways	for	transmitting	a	frame:	
i)	from	one	of	the	FIFO	queues,	in	this	case	the	kernel	code	provides	all	the	necessary	
information	to	the	firmware	for	preparing	the	transmission	(this	is	managed	by	handler
check_tx_data_with_disabled_engine);	or	ii)	the	firmware	can	transmit	frames	whose	
content	is	drawn	from	a	special	memory	called	TEMPLATE RAM like	in	the	case	of	the	
acknowledgments	and	beacons.	We	will	see	now	the	basic	steps	for	scheduling	a	packet:	

a. Choose	the	encoding,	output	antenna(s),	power	level	(does	not	work	on	all	devices)	
by	writing	the	specific	values	into SPR_TXE0_PHY_CTL (meaning	of	all	bits	at	
http://bcm-v4.sipsolutions.net/802.11/TX).	For	this	tutorial	it	is	enough	to	write	
0xFC00 for	DSSS/CCK, 0xFC01 for	OFDM;	
	

b. Load	the	value	of	the	backoff	counter	in	register SPR_IFS_BKOFFDELAY;

c. Modify	on	the	fly	the	first	64	bytes	if	needed	using	the	Transmission	&	Modify	
Engine	(see	below);	
	

d. Scheduling	the	packet	for	transmission	after	a	given	delay	by	writing	a	proper	value	
in	register SPR_TXE0_CTL;	there	are	many	combinations	for	this	register	(details	at	
http://bcm-v4.sipsolutions.net/802.11/Registers)	but	for	the	rest	of	the	tutorial	we	
will	consider	the	scheduling	of	an	ack	frame	so	that	we	can	easily	understand	how	
to	compose	packet	payload	by	taking	a	look	to	the send_response handler;	
	

e. Once	the	packet	is	scheduled	we	have	to	wait	for	the	transmission	to	start,	that	is	
signaled	by	the	activation	of	the	condition COND_TX_NOW,	that	makes	the	firmware	
jump	to	handler tx_frame_now where	the	transmission	is	finalized:	in	case	we	want	

UNIVERSITY OF TRENTO
Dipartimento di Ingegneria e Scienza dell’Informazione
Laboratory of Nomadic Communications

Pagina 3/5
Copyright © 2017 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

to	transmit	a	packet	from	the TEMPLATE RAM we	have	to	use	the	same	syntax	used	for	
the	transmission	of	an	acknowledgment	that	is	right	below	the	label
dont_update_preamble.

We	will	now	use	what	we	learnt	from	the	previous	tutorial	for	implementing	a	system	that	
transmits	an	arbitrary	frame	with	chosen	payload	and	MCS	when	we	receive	a	specific	
packet	(e.g.,	UDP	to	port 0xbeef).	Add	the	filtering	instruction	in rx_data_plus and	when	the	
content	is	detected	instead	of	jumping	to send_response jump	to	our	own
send_fake_response where	we	will	compose	the	frame.	In	the	following	we	imagine	that	the	
packet	is SIG_LENGTH bytes	long.	Then	to	define	this	new	handler	we	have	to:

a. choose	the	encoding,	e.g.,	OFDM,	then	write 0xFC01 to SPR_TXE0_PHY_CTL

b. remember	in	the	state	machine	that	we	are	going	to	transmit	a	(fake)	response	at	
the	end	of	the	current	reception:	

orxh NEED_RESPONSEFR,
 SPR_BRC & ~ (NEED_BEACON|NEED_RESPONSEFR|NEED_PROBE_RESP),
 SPR_BRC

c. create	a	valid	PLCP,	for	the	OFDM	case	this	requires	to	specify	in	the	first	16-bit	

word	of	the	PLCP	the	logical	or	of	the	number	of	octets	shift	left	five	times	with	the	
rate	code	type,	where	the	rate	code	is	(0xB, 0xF, 0xA, 0xE, 0x9, 0xD, 0x8, 0xC)	for	
the	corresponding	(6,	9,	12,	18,	24,	36,	48,	54)Mb/s	rate;	the	resulting	value	should	
be	loaded	in	the	first	register	of	the TME,	e.g.,

mov LENGTH_RATE_KEYWORD, SPR_TME_VAL0
mov 0xFFFF, SPR_TME_MASK0
mov 0, SPR_TME_VAL2
mov 0xFFFF, SPR_TME_MASK2

Here	the	first	assignment	overrides	the	first	two	bytes	of	the	outgoing	packet,	
independently	it	is	being	transmitted	from	a	FIFO	or	from	the TEMPLATE RAM.	To	
finally	modify	only	specific	bit,	however,	we	can	use	the	corresponding	mask,	in	this	
case	we	want	to	change	all	16	bits	so	we	write 0xFFFF.	The	second	assignment	is	
necessary	to	avoid	firmware	crashes:	remember	this	rule	for	the	next	tutorial!!	
	 	
For	the	DSSS/CCK	case	we	have	to	load	into	the	first	two	bytes	of	the	PLCP	the	
DSSS/CCK	rate	code	(e.g.,	for	1Mb/s	it	is	0x040A),	then	load	into	bytes	2	and	3	the	
number	of	microseconds	taken	by	the	transmission	of	the	frame	payload,	in	this	
case	it	is	SIG_LENGTH * 8 (1	bit	per	microsecond)	hence

mov RATE_CODE, SPR_TME_VAL0
mov 0xFFFF, SPR_TME_MASK0
mov MICROSECONDS, SPR_TME_VAL2
mov 0xFFFF, SPR_TME_MASK2

UNIVERSITY OF TRENTO
Dipartimento di Ingegneria e Scienza dell’Informazione
Laboratory of Nomadic Communications

Pagina 4/5
Copyright © 2017 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

Note	that	while	for	bytes	0	and	1	we	use VAL0/MASK0,	for	bytes	2	and	3	we	use
VAL2/MASK2.

Question:	

i. What	should	we	use	to	change	only	byte	7?	(and	not	byte	6?)		
	

d. remember	somewhere,	e.g.,	into	a	new	variable tx_fake_response that	we	will	
transmit	our	fake	response	and	not	the	legacy	acknowledgment:	this	will	be	
important	in tx_frame_now for	finalizing	the	transmission.	
	

e. compose	the	packet:	take	into	account	that	with	this	approach	we	can	specify	(on	
the	fly)	only	the	first	64	bytes	(using SPR_TME_VAL0 to SPR_TME_VAL62 and
SPR_TME_MASK0 to SPR_TME_MASK62),	but	as	the	first	6	bytes	are	for	the	PLCP	we	can	
change	only	the	first	58	bytes	of	the	frame	payload.	
	
Decide	the	frame	control	and	write	it	using	the	correct TME registers:	pay	attention	
to	avoid	using	invalid	values	otherwise	the	sniffer	will	not	show	such	frames.		
	
Exercise:	

i. Try	to	send	a	short	data	frame	to	a	valid	active	station,	we	will	see	the	ack	
coming	back	from	it!	

	
f. finally	remember	to	load	into NEXT_TXE0_CTL the	value	that rx_complete will	use	for	

scheduling	the	fake	response,	to	to	conclude	the	handler,	e.g.,	copying	what	done	by
send_response do

mov 0x4021, NEXT_TXE0_CTL
jext COND_RX_COMPLETE, rx_complete
jext COND_TRUE, state_machine_idle

g. now	we	customize	the tx_frame_now handler.	As	we	are	changing	basically	the	way	

we	send	an	ack,	we	can	simply	focus	on	the	code	right	after	label
dont_update_preamble,	where	we	can	check	if	we	are	transmitting	a	real	ack	or	the	
fake	response	by	controlling	the	value	of	variable tx_fake_response,	e.g.,

dont_update_preamble:
 jne tx_fake_response, 0, finalize_fake_response

[cut ack code]

finalize_fake_response:
 mov 0xB, SPR_TXE0_WM0
 mov 0, SPR_TXE0_SELECT
 mov 0, SPR_TXE0_Template_TX_Pointer
 add SIG_LENGTH, 2, SPR_TXE0_TX_COUNT
 mov 0x826, SPR_TXE0_SELECT
 mov 0, tx_fake_response
 add TX_COUNTER, 1, TX_COUNTER
 jext COND_TRUE, complete_tx

UNIVERSITY OF TRENTO
Dipartimento di Ingegneria e Scienza dell’Informazione
Laboratory of Nomadic Communications

Pagina 5/5
Copyright © 2017 F. Gringoli <francesco.gringoli@unibs.it>, all rights reserved

The	first	line	is	really	important:	to	modify	bytes	on	the	fly	with	the TME it	is	not	
enough	what	we	did	so	far,	we	have	also	to	specify	in	the	couple	of	registers
SPR_TXE0_WM0 and SPR_TXE0_WM1 which	words	of	16	bit	should	be	actually	modified:	
consider	the	two	registers	as	bitmasks.	In	this	case	we	want	to	change	byte	0-1,	byte	
2-3	(PLCP)	and	byte	6-7	(Frame	Control),	so	the	bitmask	will	be	(last	four	bits	of
SPR_TXE0_WM0) 1011 which	is	exactly 0xB.

Second	line	specifies	the	transmission	will	happens	from TEMPLATE RAM (0 in
SPR_TXE0_SELECT),	third	line	sets	the	start	address	in	the TEMPLATE RAM,	fourth	
requires SIG_LENGTH + 2 bytes	are	transmitted	(this	is	because	in	total	we	should	
have SIG_LENGTH + 6 considering	the	first	six	bytes	of	the	PLCP	but	the	TX	Engine	
will	add	the	FCS	automatically	at	the	end,	so	we	should	ask	for SIG_LENGTH + 6 - 4
that	is	exactly	what	written J).	Then	we	reset	the tx_fake_response variable	to	zero	
and	we	store	somewhere	in	the	shared	memory	how	many	fake	response	we	sent	so	
far	(choose	a	shared	memory	address	for TX_COUNTER).	
	

f. REMEMBER	also	to	reset	the tx_fake_response variable	to	zero	in	rx_plcp	!!	This	is	
really	important	to	avoid	unexpected	behaviors.	
	

4) Experiment	Compile	the	firmware,	associate	to	an	AP,	then	from	the	AP	use	iperf	to	send	a	
session	to	the	chosen	port,	use	a	sniffer	to	confirm	that	the	packet	we	forged	is	actually	
transmitted.	

