

STAGE WEEK 2015

Playing with Wireless Networking

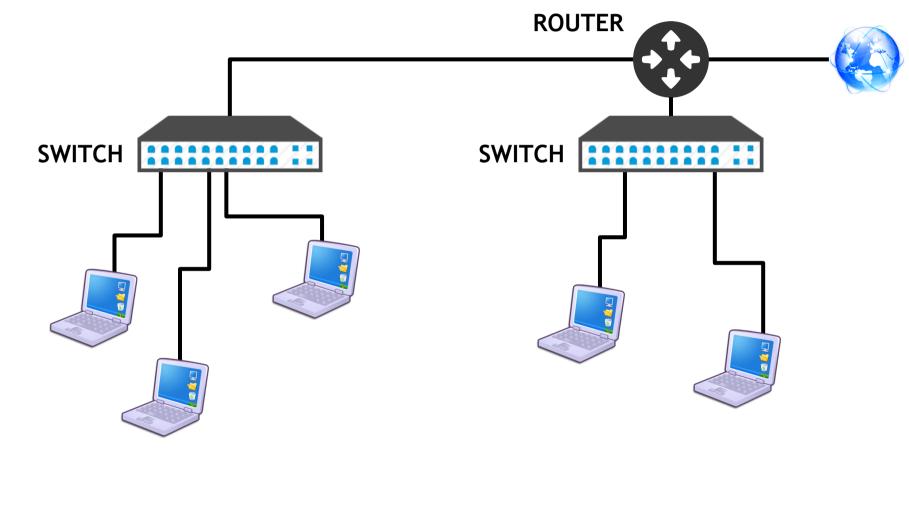
Medium Access Control algorithms

Introduction to IEEE 802.11

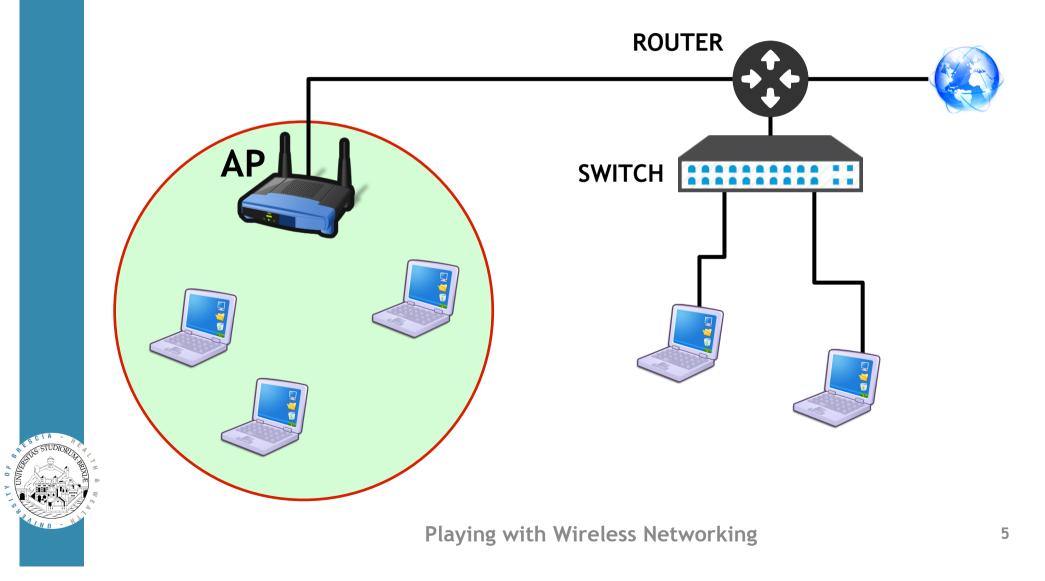
Wireless LAN Standard

A quick introduction to the IEEE 802.11 standard

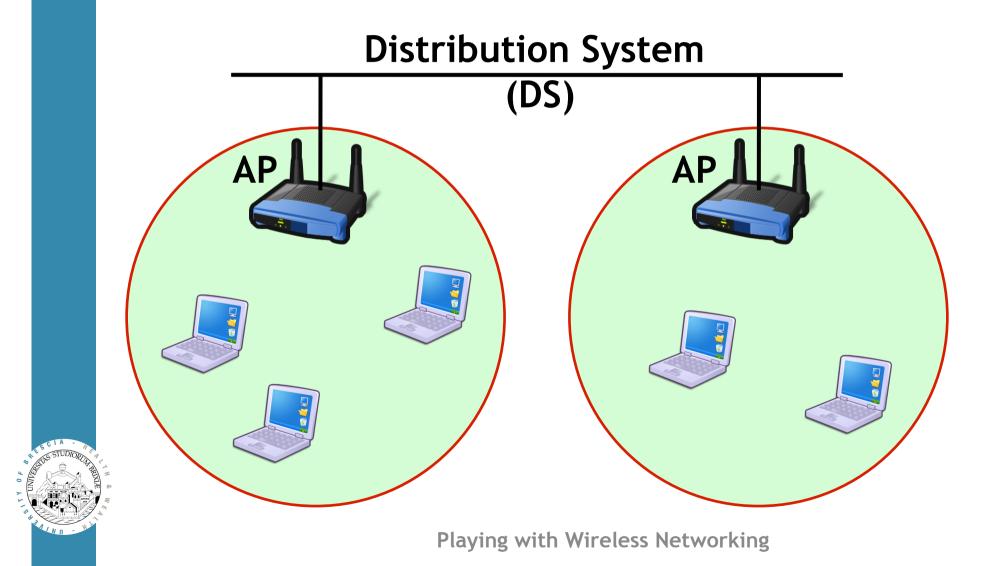
IEEE 802.11 standard


$\hfill\square$ Definition of wireless interface

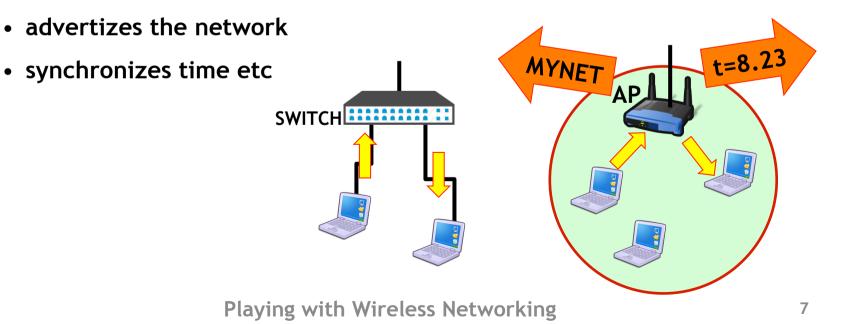
- between a client and a base station (aka: Access Point, AP)
- between wireless clients (simply: stations)
- $\hfill\square$ Two lower layers of the stack
 - 1-PHY radio transmission: modulations, bands, frequency, energy
 - 2-MAC medium access control: timings, retransmissions, signaling
- Regulator published many amendments since '97
 - Throughput improvements (e.g., 802.11ac up to multi Gb/s)
 - Security (802.11i), QoS (802.11e), reliable multicast (802.11aa)



□ Very long standard, 2012 release is approx. 2800 pages!

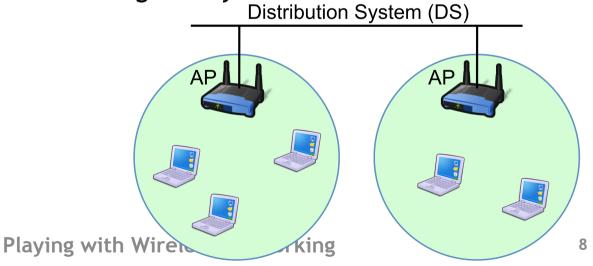

A LAN goes WIRELESS

A LAN goes WIRELESS/2


A LAN goes WIRELESS/3

Wireless-LAN vs Wired-Lan

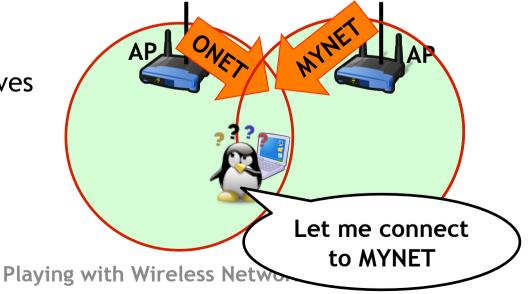
□ Apparently: AP replaces the switch, air replaces cables □ AP, in fact,


- forwards inter-stations frames (no direct comm)
- rules stations access to the network (e.g, by authenticating)
- manages even more issues than the switch has to, i.e.,

802.11 Wireless-Lan: Infrastructure Mode Basic

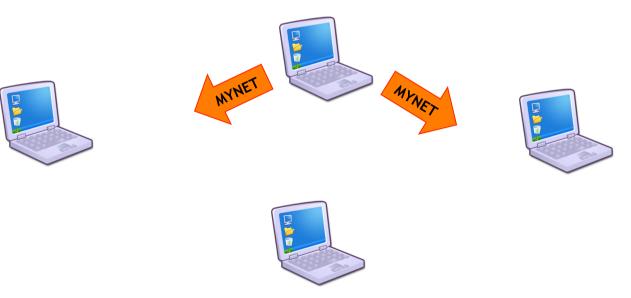
□ Each cell is an Infrastructure "Basic Service Set" (BSS)

- The Access Point (AP) "creates" and maintain the BSS _
- Time sync, BSS name and capabilities inside "Beacons" frame -
- All BSS traffic goes through the AP
- □ More cells build an "Extended Service Set" (ESS)
 - A Distribution System (DS, wired or wireless) connect all APs
 - DS may connect to an Internet gateway



802.11 Wireless-Lan: Infrastructure Mode Basic

\Box A station that wants to connect does the following:


- Scan: check all the available networks for one known
 - Passively, by receiving "Beacons", or Actively, by sending "Probes"
- Authenticate: proves to the AP she knows something
 - Easiest case: simply send her identity, wait for an ack
- Associate: station and AP shares mutual capabilities
- □ Eventually:
 - Station sends/receives traffic

802.11 Wireless-Lan: Ad-Hoc Mode Basic

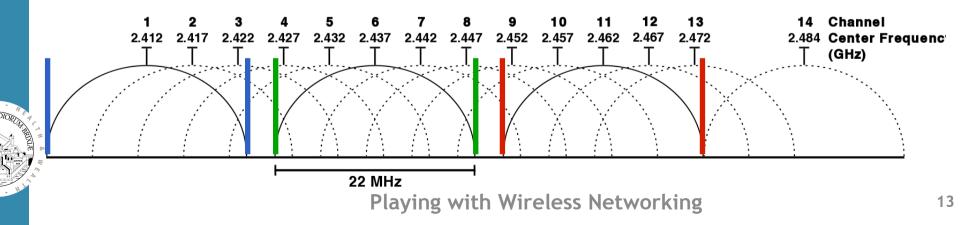
□ Stations create an Ad-Hoc network with a specific "NAME"

- No AP needed
- The first station active starts sending beacons (e.g., leader)
- Other stations can join the Ad-Hoc network
 - If they do not receive the beacon from the leader, they transmit one!

A very incomplete standard synopsis

A very incomplete standard synopsis □ In this course we will use 802.11bg only devices

- Yeah, pretty old hardware but...
- ... we have access to the NIC internals, we can play with the standard


Document	modulations	band (GHz)	width (MHz)	Rates
802.11b/g	DSSS/CCK OFDM	2.4	20	1, 2 / 5.5, 11 6, 9, 12, 18, 24, 36, 48 ,54

IEEE 802.11: insight of the 2.4GHz band

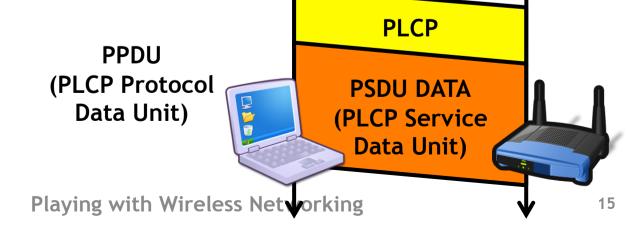
□ ISM 2.4GHz band spans range [2400-2483.5]MHz worldwide

- Availability subject to country regulations
 - E.g., USA [1-11], Italy [1-13], Japan none of them!
- To make Wi-Fi working, Japan regulator allows outsider channel
- □ Standard: 13 channels (5 MHz spacing) + channel 14
 - ch_N @ [2407 + 5 * N]MHz, 1≤N≤13; very busy Θ
 - ch_{14} @ 2484MHz; not used outside Japan \odot

□ How many orthogonal channels? Remember 20MHz width

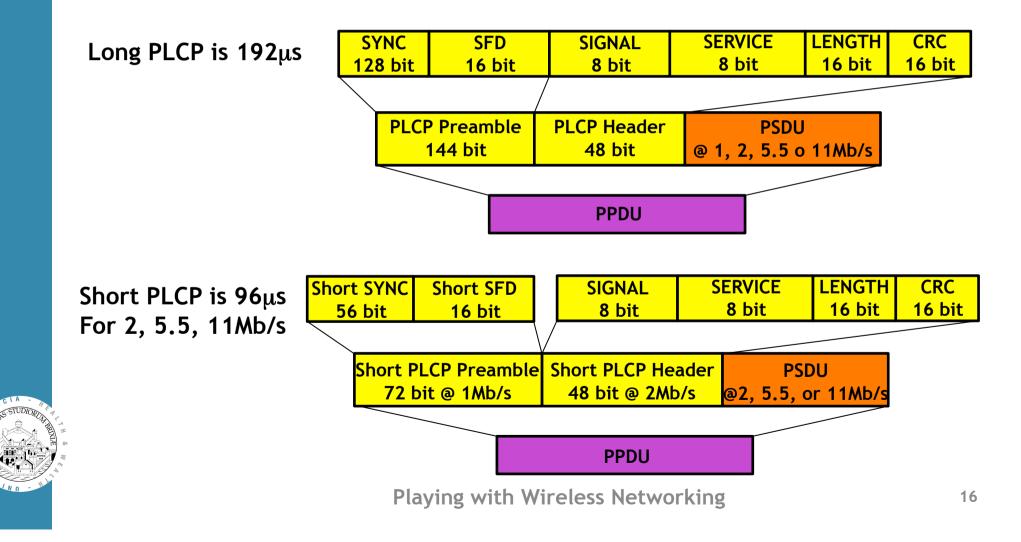
Wireless LAN Standard

802.11bg Physical Layer analysis


IEEE 802.11bg: a frame unit (no MAC yet)

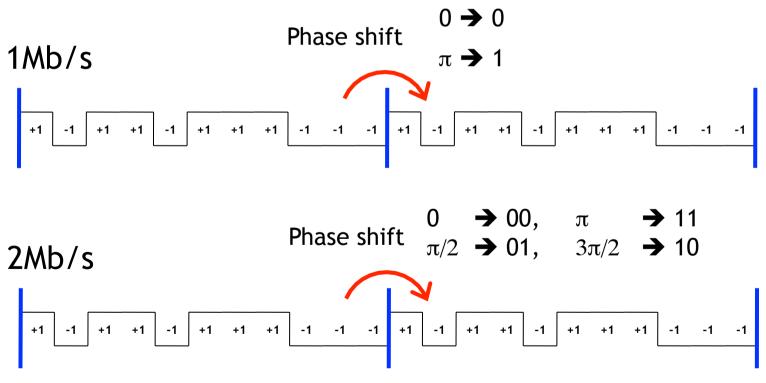
□ Each frame preceded by PLCP preamble

- Physical Layer Convergence Procedure
- □ PLCP helps the receiver
 - Understanding a transmission is beginning (energy raise)
 - Knowing which data-rate encoding is used for data and its length
 - Synchronizing the decoding subsystem


□ PLCPs of 11b and 11g differ

- Let's check!

IEEE 802.11b: PPDU format


□ Two possible PLCP format:

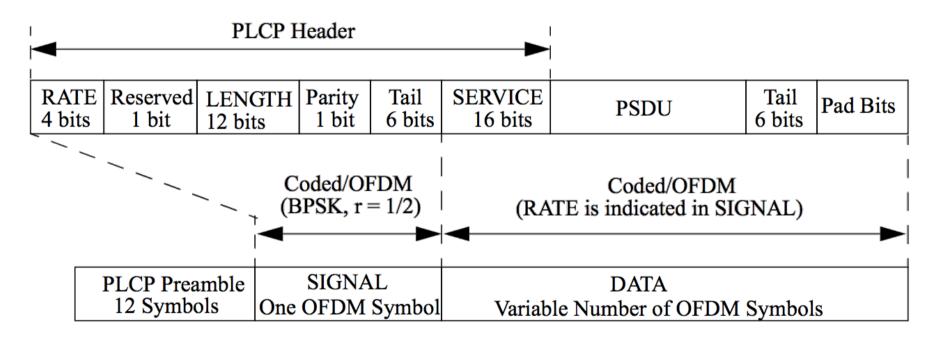
IEEE 802.11b: PPDU format/2

Direct Sequence Spread Spectrum modulations

- A sequence of 11 "chips" transmitted repeatedly by shifting phase
- Phase shift of consecutive chip trains encode the PPDU

IEEE 802.11b: PPDU format/3

□ PPDU format is very inefficient!


E.g.: Acknowledgement (shortest frame), 14byte = 112bit

- @1Mb/s, PSDU:= $112\mu s$
- @2Mb/s, PSDU:= 56µs
- @5.5Mb/s,
- @11Mb/s,
- PSDU:= $21\mu s$ PSDU:= $11\mu s$

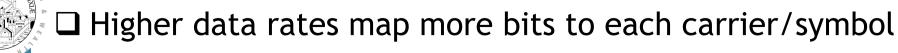
PLCP much longer than actual data!

IEEE 802.11g: PPDU format

□ 802.11g: new PLCP, very short

PLCP is $20 \mu s$

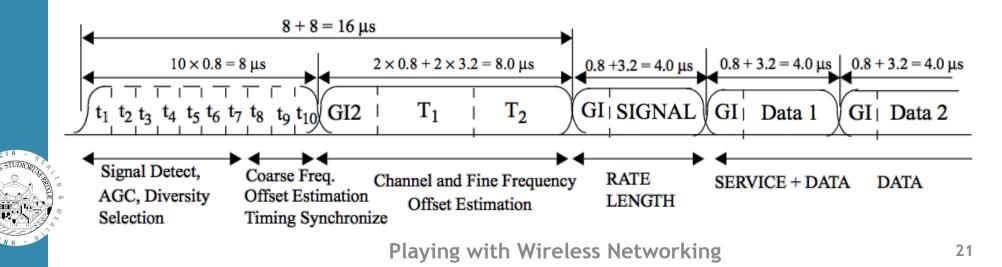
IEEE 802.11g: PPDU format/2


Orthogonal Frequency Division Multiplexing (6Mb/s)

- PPDU is divided in groups of 24 bits (three bytes)
- Each group of 24 is expanded to 48 bit (FEC)
- Each bit of these 48 weights a specific carrier (with -1 for 0, +1 for 1)

- Five additional pilot carriers - pink - inserted

-25 -23 -20 -18 -16 -14 -12 -10 -8 -5 -3 -1 +1 +3 +5 +8 +10 +12 +14 +16 +18 +20 +23 +25 -26 -24 -22 -19 -17 -15 -13 -11 -9 -6 -4 -2 +2 +4 +6 +9 +11 +13 +15 +17 +19 +22 +24 +26


- Time signal computed by running ifft of the carrier weights
- Each group takes $4\mu s$, call this "OFDM symbol"

IEEE 802.11g: PPDU format/2

□ 802.11g: frame includes

- PLCP Preamble made of 10 short symbols $(8\mu s)$ + 2 long ones $(8\mu s)$
- PLCP Header made of
 - SIGNAL field in its own symbol ($4\mu s$, PSDU length+rate)
 - SERVICE field, first 16 bits of first data symbol
- PSDU made of symbols, each one carrying N bits, N depends on Rate
- PSDU terminate with CRC32 and at least 6 padding bits

IEEE 802.11g: PPDU format/2

□ 802.11g: data payload

- Bit expanded by convolutional encoder for FEC, R = [1/2, 2/3, 3/4]
- Groups of N_{CBPS} (Coded Bit Per Symbol) or N_{DBPS} (Data Bit Per Symbol)
- Each subcarrier transport N_{BPSC} bit (Bit Per SubCarrier)

Modulation	R	N _{BPSC}	N _{CBPS}	N _{DBPS}	Data rate
BPSK	1/2	1	48	24	6
BPSK	3/4	1	48	36	9
QPSK	1/2	2	96	48	12
QPSK	3/4	2	96	72	18
16-QAM	1/2	4	192	96	24
16-QAM	3/4	4	192	144	36
64-QAM	2/3	6	288	192	48
64-QAM	3/4	6	288	216	54

IEEE 802.11g: frame format/6

E.g.: Acknowledgement, 14byte = 112bit

□ PLCP: 20µs

DATA_{PSDU}: 16b(SERVICE)+112b(PSDU)+6b(tail_{min})=134b

Data rate	PLCP	N _{DBPS}	bit	symbol	ΔT	Extension	Total
6	20µs	24	134	6	24µs	6µs	50 <i>µs</i>
9	20 <i>µs</i>	36	134	4	16 <i>µ</i> s	6 <i>µ</i> s	42 <i>µ</i> s
12	20 <i>µs</i>	48	134	3	12 <i>µ</i> s	6µs	38µs
18	20 <i>µs</i>	72	134	2	8µs	6µs	34µs
24	20 <i>µs</i>	96	134	2	8µs	6µs	34µs
36	20 <i>µs</i>	144	134	1	4µs	6µs	30 <i>µs</i>
48	20 <i>µ</i> s	192	134	1	4µs	6µs	30 <i>µs</i>
54	20µs	216	134	1	4μs	6µs	30 <i>µ</i> s

Wireless LAN Standard

802.11bg Frame format analysis (@ layer 2)

IEEE 802.11: Frame types

□ Three types of Mac Protocol Data Unit (MPDU):

- Management, e.g. Association Request/Response, Beacon, (De)Auth
 - Network/BSS Advertisement, BSS Join, Authentication etc
- Control, e.g. ACK, RTS, CTS, Poll, etc
 - For channel access (RTS, CTS), positive frame acknowledgment
- Data: Plain data + QoS Data, etc
 - Frames with user data
- MPDU fields: depend on frame type!

2	2	6	6	6	2	6	2	0-2312	4
Frame Control	Duration ID	Address 1	Address 2	Address 3	Sequence Control	Address 4	QoS Control	Frame Body	FCS

□ Frame Control:

- Protocol version, only 0 today
- Type and Subtype encode frame type + subtype
- ToDS: frame is for Distribution System; FromDS frame is from DS
 - If both set to 1, frame is transported by a Wireless DS
- More: announce other fragments are coming (PSDU is fragmented)
- Retry: help rx'er understanding this is a retransmission
- {Pwr Mgt, More Data} deal with power management, save
- Protected: announce Frame Body is encrypted

_	b ₀	b ₁	b ₂	b_3	b_4	b_5	b_6	b ₇	b ₈	b ₉	b ₁₀	b ₁₁	b ₁₂	b ₁₃	b ₁₄	b ₁₅
	Proto Vers	.	Fra Ty	me pe		Fra Subt	me :ype		To DS	From DS	More Frag	Retry	Pwr Mgt	More Data	Crypt	Order

Duration/ID

- Meaning depends on MPDU type
- Data: number of μs after frame end during which medium is reserved
 - Used by Virtual Carrier Sense

□ Address fields: they depends on ToDS/FromDS fields:

- BSSID: Basic Service Set IDentification
 - Address of the AP
- DA: Destination Address, "final destination"
- RA: Receiver Address, immediate frame destination
- SA: Source Address, who has generated this frame
- TA: Transmitter Address, who has forwarded this frame

	To DS	From DS	Address 1	Address 2	Address 3	Address 4
	0	0	RA = DA	TA = SA	BSSID	N/A
	0	1	$\mathbf{R}\mathbf{A} = \mathbf{D}\mathbf{A}$	TA = BSSID	SA	N/A
	1	0	RA = BSSID	TA = SA	DA	N/A
9	1	1	RA	TA	DA	SA

□ Sequence Control:

- Fragment number, 4 bits
 - For fragmented PSDU, it's the number of this fragment
- Sequence Number, 12 bits, unique for PSDU
 - Identify the PSDU (used by rx'er to avoid accepting same frame > once)

b ₀ b ₃	b ₄	b ₁₅
Fragment number	Sequence number	

QoS Control: identify Traffic Category (optional field)

IEEE 802.11: PSDU example - Data Frame

□ IP packet, no QoS, from STA to AP (ToDS): Data frame

- Logical Link Control (LLC) encapsulation is used
 - 8 bytes before IP: 0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00, 0x08, 0x00
- Type: Data frame SubType: $0 \Rightarrow$ Byte#0 := 0x08
- ToDS \Rightarrow Byte#1 := 0x01
- Duration: time to tx an ACK + SIFS
- Address: it's a ToDS frame, fill the three address fields
- b₁₅ Fragment Sequence SeqCTRL: seq. no:=33 \Rightarrow SeqCTRL:=0x0210 number number 2 2 8 Ν 2 6 6 6 4 08 01 3A 01 **BSSID** SA DA 10 02 AA AA 03 00 00 00 08 00 FCS IP

Για	ynng v	VILII	1222	NELWUI	KIIIS

b_0	b ₁	b ₂	b ₃	b_4	b_5	b_6	b ₇
Protocol Version		Frame Type					
b ₈	b ₉	b ₁₀	b ₁₁	b ₁₂	b ₁₃	b ₁₄	b ₁₅
To DS	From DS	More Frag	Retry	Pwr Mgt	More Data	Crypt	Order

ethertype

IEEE 802.11: PSDU example - Data Frame

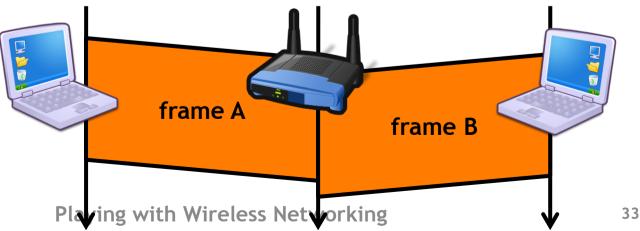
Example with WireShark

- Open a trace file
- Show Beacons
- Show Data, retry etc

Wireless LAN Standard

The Basic Access Scheme

Distributed Coordination Function (DCF)


Transmissions in a Broadcast Medium

$\hfill\square$ If two stations transmit at the same time

- Receiver(s) cannot decode packets (collision)
- Transmitters do not know whether data was received

□ 802.11 standard introduces

- Slotted medium
- Positive Acknowledgment with Retransmission
- Carrier Sense Multiple Access/Collision Avoidance

Time Slot

□ Time is divided into intervals, called **slots**

- Working with slot (tx may start with slot) reduces uncertainty

 $\hfill\square$ A Slot is the system unit time

- 802.11b Slot Time is 20 μ s, 11g is 9 μ s

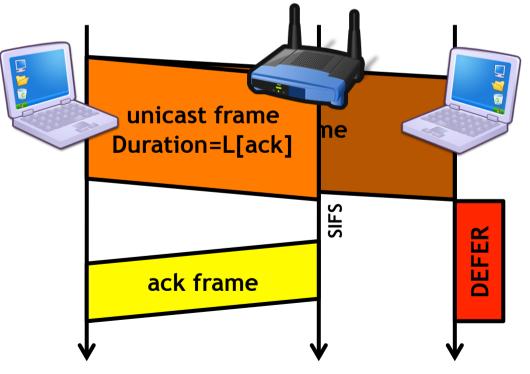
Time synchronized with Beacons transmitted by the BSS AP

- Each Beacon carries a 64bit time value (1 μ s granularity)
- Stations in the BSS copy beacon time to their clock registers
- Skews due to poor clock design periodically corrected

□ A BSS is a synchronous system!!

InterFrame Space (IFS)

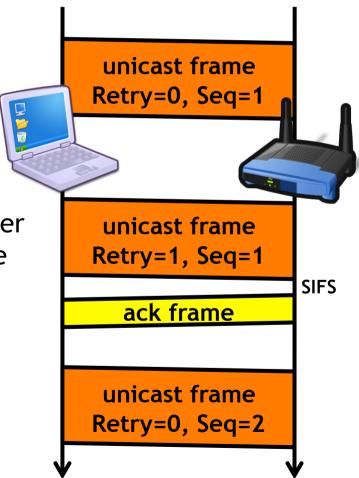
 $\hfill\square$ Time interval between consecutive transmissions


Different IFSs allow different access priorities

- Short IFS: separate transmissions belonging to the same dialogue
 - SIFS in 11bg it's $10 \mu s$
- Point Coordination IFS: used by the Point Coordinator
 - PIFS is SIFS + Slot Time
- Distributed IFS: waited by stations when contending for a free channel
 - DIFS is SIFS + 2 * Slot Time
- Extended IFS: waited by stations when receiving a bad frame
 - EIFS is SIFS + TxTime[AckFrame] + DIFS

Positive Acknowledgment & Retransmissions I Received unicast frame must be acknowledged

- Other nodes defer transmissions by using the received "Duration"



Playing with Wireless Networking

Positive Acknowledgment & Retransmissions/2

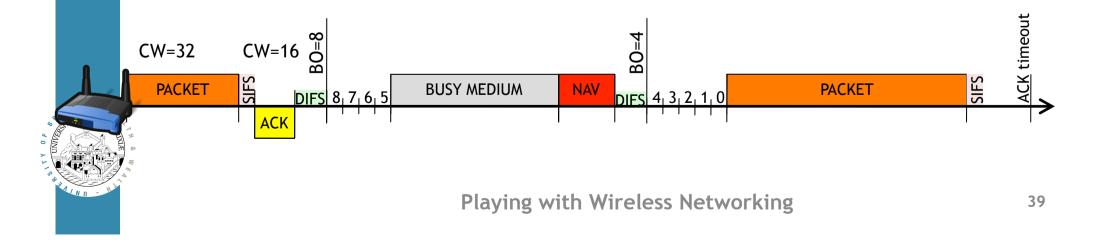
$\hfill\square$ If no acknowledgment coming from receiver

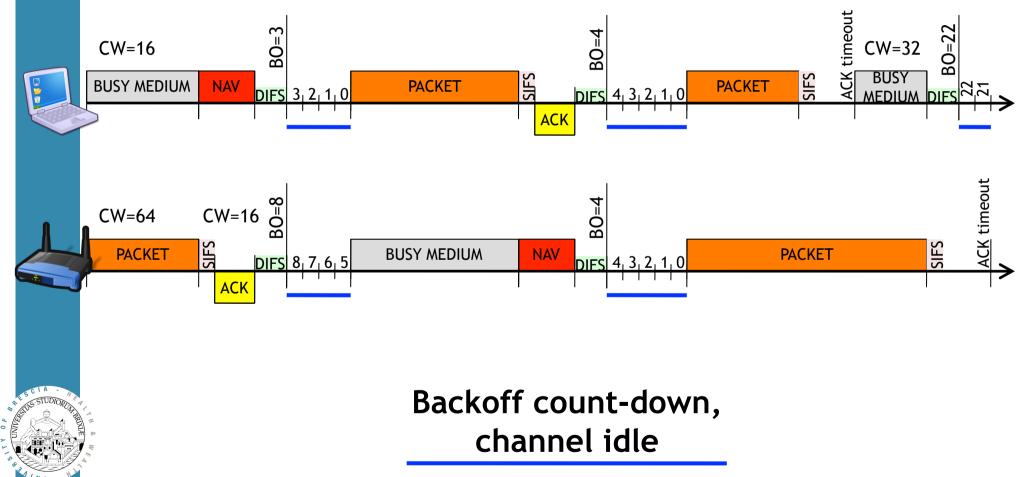
- Retransmit the frame with Retry bit set and same sequence counter
- When acknowledgment received
 - Increase the sequence counter and switch to the next frame

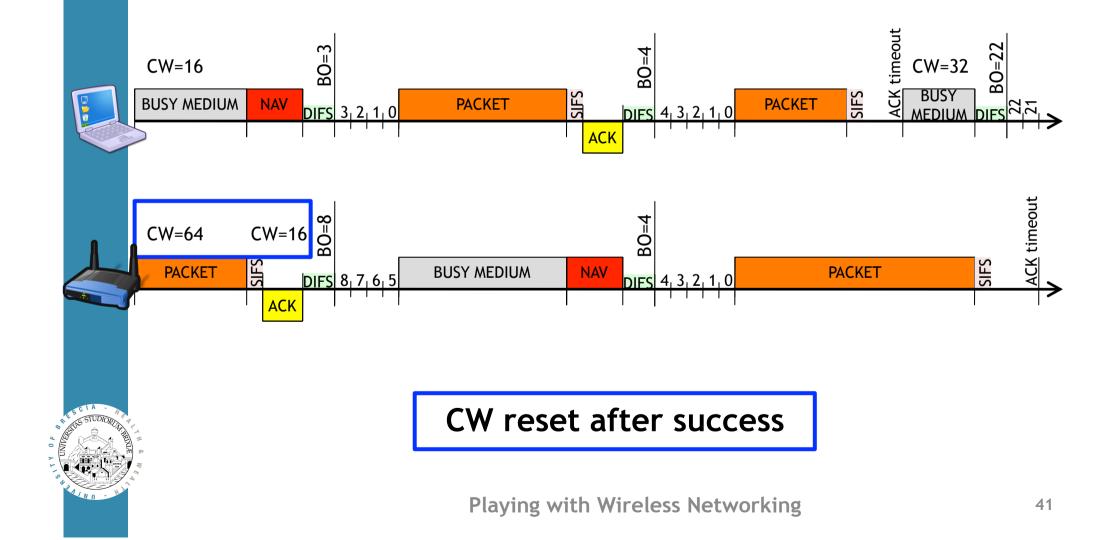
Carrier Sense Multiple Access/ Collision Avoidance

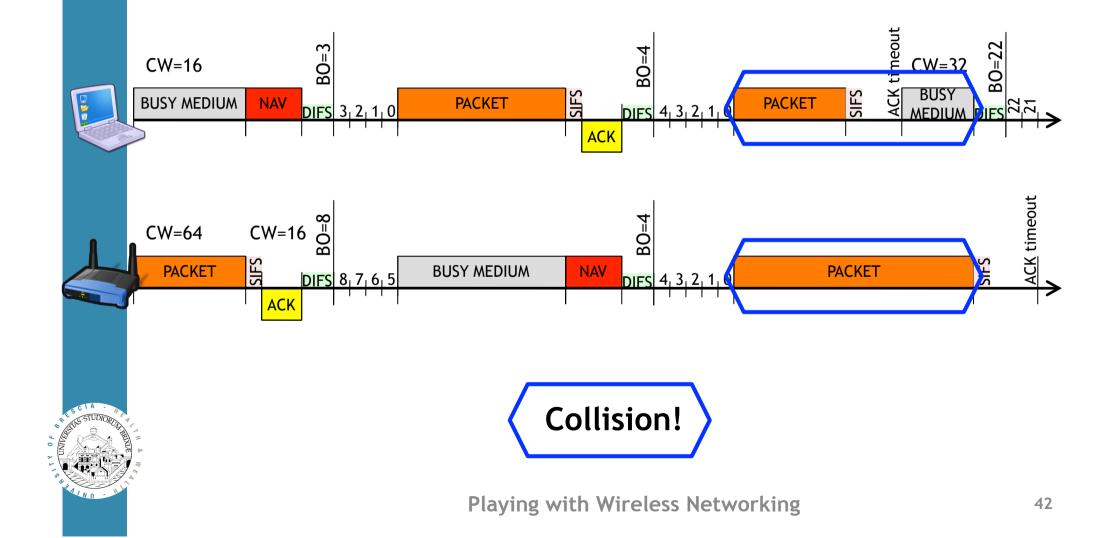
□ Apart from slot synchronization

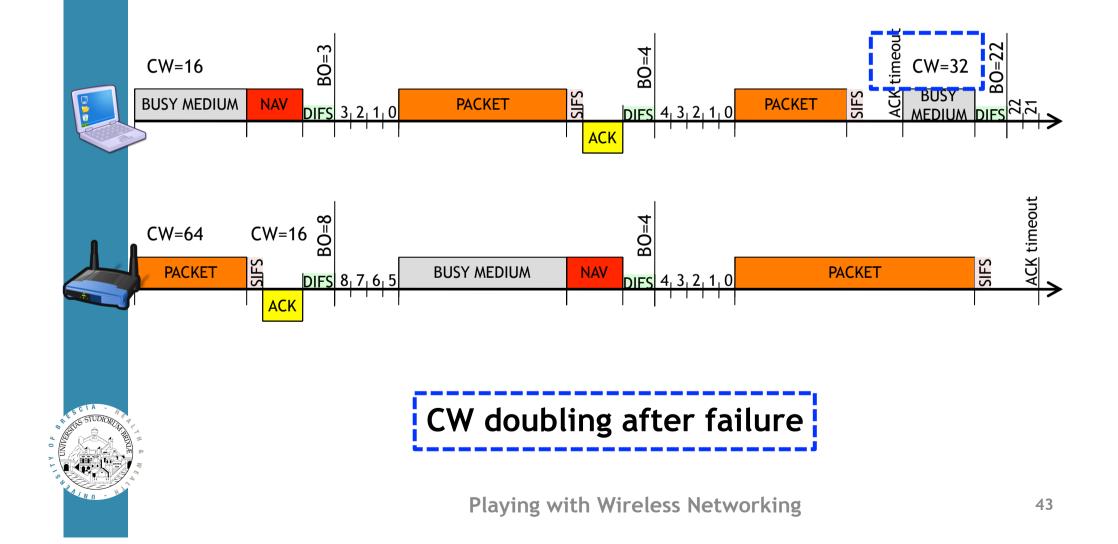
- No other explicit coordination among stations
- □ To avoid repeated collisions
 - Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA)
 - Given free-space attenuation, /Collision Detection is not feasible!

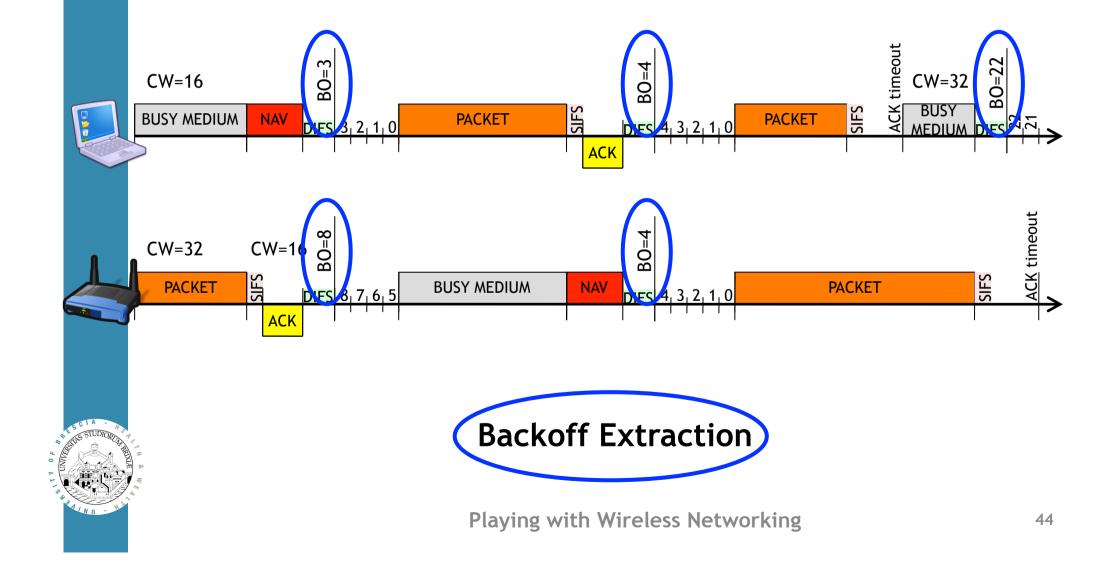

CSMA/CA Basic

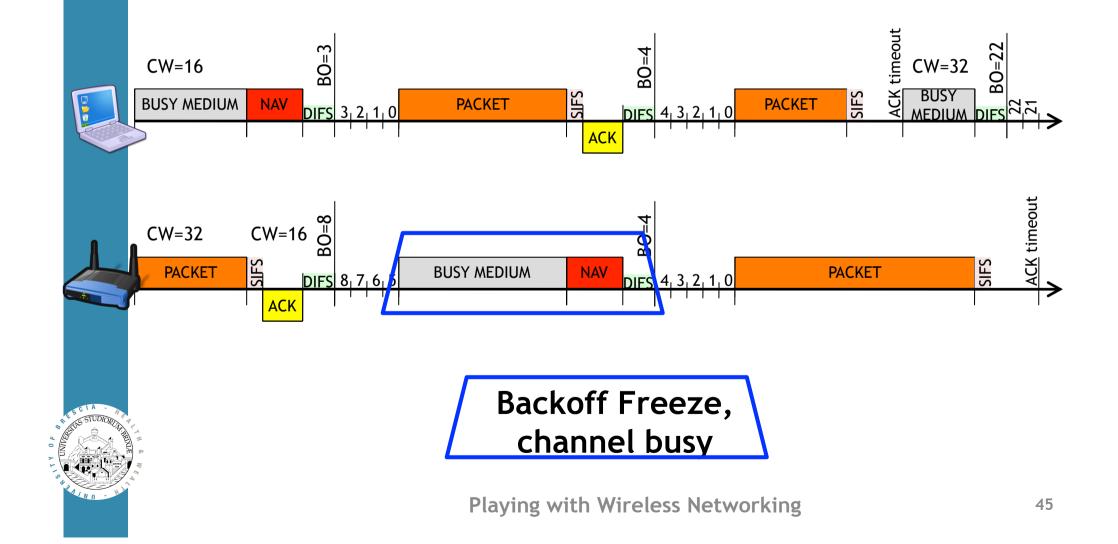

- Stations willing to transmit have to contend for channel access
- A station repeats the contention procedure for every (re)transmission




Each station keeps a Contention Window (CW) parameter


- 1. At the end of the previous transmission attempt
 - If collision (no ack), double CW, otherwise reset to CW_{min}
 - Extract Backoff value (BO) \in U[0, CW 1]
- 2. "Monitor channel free for t > DIFS"
- 3. Backoff stage: decrement BO to zero
 - Backoff: if medium free, decrement BO at every SLOT
 - When medium busy \Rightarrow Suspend: BO freezed & goto 2
 - If BCKOFF == $0 \Rightarrow$ Transmit!





CSMA/CA, Exponential Backoff rule

□ BCKOFF value is computed after every tx attempt

- BCKOFF taken from [0, 1, ..., CW-1] with uniform distribution

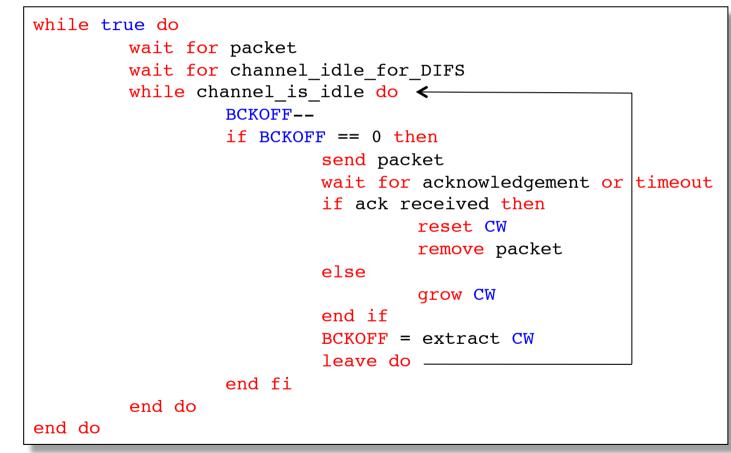
□ Contention Window (CW) refreshed

- CW = 2 * CW if after tx attempt there is a collision
 - Up to $\mathrm{CW}_{\mathrm{max}}$, then stay with $\mathrm{CW}_{\mathrm{max}}$
- $CW = CW_{min}$ if after tx attempt, tx was acked by acknowledgment

□ Standard values:

- $CW_{min} = 16/32$, $CW_{max} = 1024$

□ For tx a packet that requires ACK


- Repeat access procedure up to MAX_{times} (e.g., 7), then discard packet

This procedure guarantees network works correctly!!

CSMA/CA, pseudo-code

□ Neglecting initializations:

procedura di trasmissione

Wireless LAN Standard

Rate control algorithm (super-quick)

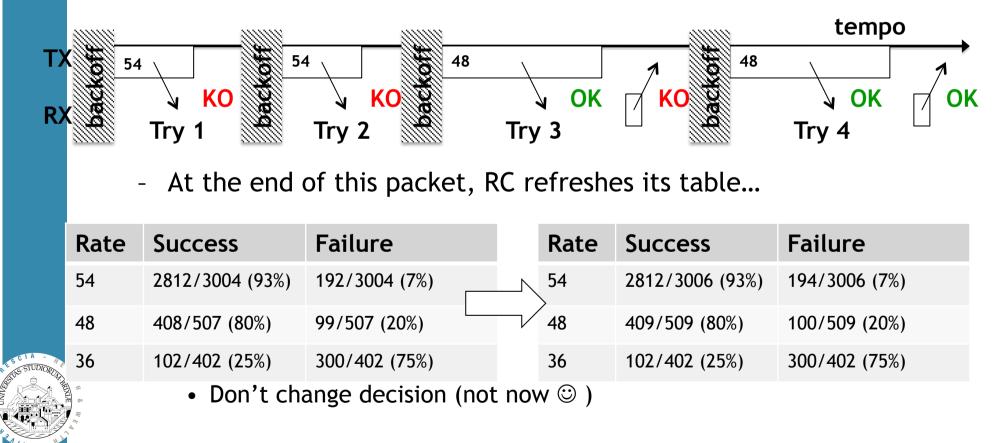
IEEE 802.11bg: rate choice

□ How to choose the rate is not specified by the standard

- Rate Controller algorithm: RC

□ RCs use feedback based techniques

E.g. Minstrel algorithm, the default today in Linux kernel


- Count total frames transmitted PER every rate, assess success probability
- Rate that has best success delivery ratio is the winner
- Periodically (every N frames) send a frame at a "look-around" rate
 - Constantly scan the entire rate set
- Rely on frames that require ACK, by counting:
 - Number of attempts per packet
 - Failed rate, successing with Wireless Networking

EEE 802.11: rate choice/2

□ Example: UDP packet

- RC set up these rates: $[54Mb/s^{\{1,2\}}, 48Mb/s^{\{3,4\}}, 12Mb/s^{\{5\}}, 1Mb/s^{\{6,7\}}]$

Bibliography

- □ [1] IEEE 802.11-2007, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, June 2007.
- [2] Tutorial on 802.11n from Cisco: <u>http://www.wireshark.ch/download/</u> <u>Cisco_PSE_Day_2009.pdf</u>
- [3] G. Bianchi, "Performance analysis of the IEEE 802.11 distributed coordination function". IEEE Journal on Selected Areas in Communications, 18(3), pp. 535-547, 2000.

