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Abstract

The aim of our work is to show the feasibility of techniques that allow to achieve
simultaneously privacy and security in large distributed storage systems running
in a P2P environment. In our case, we de�ne privacy as the possibility for users
to take part in the services of the network with their identity anonymized. At
the same time, we want to add an additional security layer for all network peers
through a group authentication mechanism, meant as basic from of trust among
them. This apparent contradiction between anonymization and identi�cation
forms the core of the problem that we will analyze, together with the requirement
that our solution be scalable to a large number of users.

Our suggestion is to accomplish these goals through the use of group signa-
tures, a modern cryptographic primitive that, in name, assures all three prop-
erties at the same time.

Initially, we will begin with a study of the properties of group signatures
with a particular focus on two instances. Our original contribution will be the
introduction of a model to study the overhead produced by group signatures
in a system with a large number of users. We will then apply such model
to a real scenario of a distributed storage system in a P2P environment: the
PERIMETER storage system. Later on, we will demonstrate with the joined
evaluation of both models that protecting the system with group signatures is
not only feasible but even e�ective, with respect to our goals.

At the same time we will �ll a gap left by the cryptographic community,
developing a software framework for the use of group signatures and integrating
it into already established cryptographic architectures.
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Sommario

Il nostro lavoro di tesi mira a dimostrare la fattibilità di tecniche che permettano
di ottenere contemporaneamente privacy e sicurezza in grandi sistemi di storage
distribuito in ambiente P2P. Nel nostro caso, decliniamo l'idea di privacy come
la possibilità per gli utenti di partecipare ai servizi della rete anonimizzando la
propria identità. Contemporaneamente vogliamo garantire un layer aggiuntivo
di sicurezza a tutti i peer della rete attraverso un meccanismo di identi�cazione
di gruppo, inteso in questo senso come una basilare forma di trust tra di essi.
Questa tensione tra il requisito di anonimizzazione e di identi�cazione costituisce
il nocciolo del problema che andiamo ad analizzare, insieme con il requisito che
la soluzione sia scalabile ad un grande numero di utenti.

La nostra proposta è di raggiungere questi obiettivi attraverso l'utilizzo di
moderne primitive crittogra�che: le �rme di gruppo, in inglese group signatures,
che sulla carta promettono tutte e tre le proprietà.

Inizialmente studieremo le proprietà delle �rme di gruppo concentrandoci,
in particolare, su due particolari esempi. Il nostro contributo originale sarà
proporre dapprima un modello per studiare l'overhead introdotto dalle �rme di
gruppo applicate ad un sistema con un gran numero di utenti. Applicheremo poi
tale modello a uno scenario reale di sistema di storage distribuito in ambiente
P2P: il sistema di storage del progetto PERIMETER. A seguire si dimosterà
con la valutazione congiunta dei due modelli che proteggere il sistema con le
�rme di gruppo non è solo fattibile ma anche e�cace, in quanto raggiunge tutti
gli obiettivi iniziali.

Parallelamente colmeremo un vuoto lasciato dalla comunità crittogra�ca,
portando avanti e descrivendo lo sviluppo di un framework software per l'utilizzo
delle �rme di gruppo e l'integrazione in architetture già consolidate.
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Chapter 1

Introduction

1.1 Motivations

Privacy is acknowledged and protected as a fundamental and inviolable right
by many legal orders, national and supranational, even if it is a concept hard
to pinpoint clearly: it is often used as a blanket term with many dimensions,
e.g. identity, location and personal data privacy, and meanings that are very
context-dependent. Thus, in practice, it is frequently di�cult to deploy means
to protect user privacy. Many systems that we use everyday were not designed at
all for privacy protection or, most of the times, it was added as an afterthought.

Traditionally, identi�cation has been a disclose-all-or-nothing action. Just
think, during our everyday life, how many times we are requested to identify
ourselves, either digitally or not. More often than not together with a great
deal of additional details, even if the only relevant information required is, for
instance, the membership of a particular group. Imagine a big company where
employees are asked to identify every time they move around the company site,
to check if they have clearance to move to a new area (e.g. a lab or a department).
Nowadays, it is a common solution to carry a personal badge for identi�cation.
Of course, this course of action works but has one critical drawback: an employee
can be tracked to an unprecedented degree during the daily routine, although
this can be unpolite at the best of times; sometimes even a criminal o�ence.
The true identity of an employee could, and should, in this case be protected
and hidden.

On the other side of the fence, the company is legitimately interested in the
security of its own site. Security is another fundamental value for society and
pertains the protection of people, structures, processes and systems. In this case
security is obviously related to the protection of the company's site, especially
with respect to outsiders. The company wants the con�dence that a person
roaming the building is without doubt a company's employee as a very basic,
binary form of trust: one is in the group of insiders or he is not. Moreover, in
case of abuse the compelling need to identify the o�ender arises. So, how to
ful�ll the needs of both parts?

It is clear enough from this example, that privacy and security are often
considered two irreconcilable and opposite goals: increasing security usually
means to hinder the aspiration to privacy. On the contrary, enhancing the

1



CHAPTER 1. INTRODUCTION 2

privacy of the people, many times can lead to poor security standards, such as
in the case described above. In fact, it is believed that it is impossible to increase
one without sacri�cing the other and vice versa. The scenario already depicted,
however, is only a very simple example where privacy and security intertwine
together. We give in the following a more complex and realistic scenario.

Imagine the case of a distributed system where a large number of users wants
to share feedback about the quality of mobile and wireless services present in
an area, so that everyone will be able to choose the service that best suits their
preferences and uses. Every user taking part in the system has the possibility
from time to time to rate subjectively the quality of a service used and to
distribute this feedback to other users upon request, together with the location
where the measurement was taken. In case of abuse (e.g. tampering with the
feedback repeatedly), a trusted authority is even able to recover a user's identity.

This peer-to-peer system is potentially a perfect way to share information
otherwise hard to obtain and could be a killer application of the future. It raises,
however, the concerns already discussed above. Is it possible to anonymize the
identity of users, so that their location is not publicy available to everyone?
Is it possible to do the same for feedbacks, so that network operators cannot
penalize them in retaliation? Is it possible to trust feedbacks received by users
whose identity is concealed? In this anonymized system, is it possible to trace
identities in case of abuse? Is this system scalable to a large number of users?

1.2 Our contribution

In this work we will show that the idea of sacri�cing security for privacy and
vice versa is based on old assumptions and that a tradeo� among anonymity,
trust, traceability and scalability is probably not necessary.

We have already discussed that these requirements seem to negate each
other, but we show that thanks to the use of advanced cryptographic techniques,
called group signatures, the goals are reachable. The main contribution of our
work is to demostrate the feasibility of obtaining, at the same time, scalability,
strong privacy and strong security properties in a large scale, mobile distributed
system, like the one described above. In this context, privacy means identity
anonimity and unlinkability of transactions. Security, in contrast, means group
identi�cation as a simple form of trust. In addition, we will be able to revoke
anonymity in case of disputes or of abuses.

We will �rst provide in chapter 2 the general background and state of the
art about group signatures, while in appendix B the number theory of interest
to understand the group signature schemes described in chapters 3 and 4.

Then in chapter 5 we brie�y describe the software development process of
an experimental framework for group signatures.

Chapter 6 analyzes the performances and sketches a single peer and a system
model for group signatures employed in a large distributed system. Finally, in
chapter 7 we try to provide an original answer to the scenario described at the
end of the previous section. We do this by making an analysis for the group
signature model applying it to a distributed storage system running in a 3G
mobile network.



Chapter 2

Background on Group

Signatures

In this chapter we give a general overview of history, scope, advantages and
disadvantages of group signatures, which are the building block of our work.

2.1 Overview

A group signature scheme is a digital signature scheme with enhanced privacy
features. Partecipants in a group signature scheme are a set of group members,
a group manager and possibly a group of non-member users. A member of the
group can sign a message anonymously on behalf of the group, producing a group
signature. Anyone with the group public key can then verify the validity of a
group signature. The group manager, a trusted individual, is the only one that
can setup a new group, admit new users into the group by issuing membership
certi�cates and, in the case of a dispute, revoke anonymity of malicious users
by opening signatures. Group signatures are anonymous and unlinkable, that
is it is computionally hard to establish the identity of the signer and whether,
or not, multiple signatures were produced by the same member.

2.2 Concepts

2.2.1 Actors

We de�ne here the actors that take part in a group signature scheme:

Group Manager trusted individual with group administrarion and de-anonymization
capabilities;

Group Member user with the capability of signing on behalf of the group;

Non-Member user not member of the group.

3
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Group
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Key

Figure 2.1: Group signature actors

2.2.2 Operations

A scheme is composed by a set of interoperating operations:

Setup generates the group keys on input the security parameters;

Join a protocol between the group manager and a user that results in the non-
member to become a group member and to receive a membership proof;

Sign an algorithm that lets a member of the group produce a signature of a
message;

Verify an algorithm to verify the validity of an alleged group signature;

Open a procedure that, for valid signatures, outputs the identity of the signer;

Revoke a procedure that allows the group manager to revoke membership of
a group member. This procedure is present only in some schemes.

2.2.3 Properties

We have said that a group signature scheme is a digital signature scheme with
privacy enhancing properties. Di�erent schemes propose di�erent properties but
we would like to summarize here informally a base set of properties, described
in [ACJT00].
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Anonymity given a valid signature of some message, identifying the actual
signer is computationally hard for everyone but the group manager;

Correctness signatures produced by a valid group member using Sign must
always be accepted by Verify ;

Unforgeability only group members are able to sign messages on behalf of the
group;

Unlinkability deciding whether two di�erent valid signatures were computed
by the same group member is computationally hard;

Exculpability neither a group member nor the group manager can sign on
behalf of other group members;

Non-Framing a group member is not responsible for signatures that he has
not produced;

Traceability the group manager is always able to open a valid signature and
identify the actual signer. This property can also be violated if a subset of
group members, pooling together their secrets, can generate a valid group
signature that cannot be opened by the group manager;

Coalition-Resistance a colluding set of group members, even if comprised of
the entire group, cannot generate a valid signature that the group manager
cannot link to one of the colluding group members.

More recently, these properties have been consensed in a more concise way
and are used more formally as the base of the security model in [BMW03] (we
point the reader to the original paper for the adversarial model and the actual
proofs of security).

Full-Traceability without a member's secret it must be infeasible to create
valid group signatures that frame a member, even if the group manager's
secret key or an arbitrary number of member secret keys are compromised
by an attacker;

Full-Anonymity it must be infeasible to distinguish signatures signed by dif-
ferent members, even if their secret keys are exposed, for signatures pro-
duced in the past or to get some clues on signatures produced in the
future.

The properties above are only the base set. We can add other desiderable
ones to the list:

Dynamic members may be added to the group even after the setup of the
group itself;

Scalability the scheme must be suitable for use with large groups of users;

Practical Security regardless of the theoretical analysis, all the algorithms
and protocols must be usable in practice (for instance, an exponential
algorithm could still be fast enough to be pratical);
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Provably-Secure it can be shown that defeating the scheme is as di�cult as
solving a well-known number theoretic problem (usually under crypto-
graphic assumptions);

Revocation it should be possible to shrink the group size revoking membership
to a group member.

2.2.4 E�cency

The e�cency of a group signature scheme is usually measured on a small set of
indicators:

• the size of group public key;

• the size of the group signature;

• the e�cency of Sign and Verify ;

• the e�cency of Setup, Join and Open;

• the e�cency of Revoke, when present.

2.3 Background

Group signatures are a relatively new advanced cryptographic tool, introduced
in 1991 by work of [CvH91]. Like ordinary digital signatures, they allow a signer
to demostrate knowledge of a secret with respect to a message. In addition, they
provide the signer with anonymity and unlinkability of di�erent signatures. Only
the group manager, from now on GM , is able to �open� a signature, revoking
anonymity and recovering the signer's identity.

It is interesting to note that a concept dual to group signatures (and in
practice often the origin of the schemes) is identity escrow [KP98]. It can be
regarded as a group identi�cation scheme with revocable anonymity. In fact,
any identity escrow scheme can be turned into a group signature scheme by
applying the Fiat-Shamir heuristic [FS86] to the protocol for providing mem-
bership; the opposite is achieved by signing a random message and then proving
the knowledge of a signature on the chosen message.

Chaum and van Heist proposed four static schemes, in which the addition
of new members is possible only at the cost of reforming the group with a
new group public key, GPK, and new membership certi�cates. Security and
e�ciency problems were addressed by later work of [CP95] and [Cam97]. All
these solutions, however, su�er from undesiderable drawbacks:

• the length of the GPK and/or the size of a signature depend on the size
of the group so that they are not suited for large groups;

• to add new group members, it is necessary to modify at least the GPK.

The scheme of [CS97] is a major breakthrough in the �eld. In fact, it pro-
poses a scheme where all the following are independent of the number of group
members:

• the length of the GPK;
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• the length of the signatures;

• the computational e�ort required for signing;

• the computational e�ort required for verifying.

In addition, there is no need to change the GPK every time a new member is
added to the group. This e�ectively paves the way for dynamic groups of a,
possibly, large set of members. The term dynamic anyway may be misleading,
because no scheme of the time solved the problem of revocation of membership
(e.g., due to expiration of the subscription to the group or due to persistent
malicious behaviour of a member): the term monotonically growing has also
been suggested instead.

Several new schemes, based on the same assumptions, with interesting im-
provements were then proposed by [Cam98], [CM98b], [CM98a] and [KY04].
Some have been subsequently broken or are ine�cient or o�er unproven secu-
rity. Ateniese and Tsudik [AT99] pointed out some obstacles that stand in the
way of real world applications of group signatures, such as coalition attacks and
member deletion. Basically at this time, the issue of removing a member from
the group was solved by periodically invalidating every member certi�cate and
reissuing new ones for the members still allowed to sign.

The �rst practical, coalition-resistant and provable secure scheme is from
Ateniese et al. [ACJT00], from here on simply referred as ACJT. This scheme
has stood the test of time and for many years has been regarded as the state of
the art.

Still, even with ACJT, the issue of shrinking group membership without in-
curring in massive computational costs, has not been solved. The solution to
this problem is not merely an extension of the case of static groups because the
dynamic case is more complex, bringing in the arena more requirements and
issues. For instance, it is not possible to publish revoked member identities in
a Member Revocation List, because of the anonymity feature. So how to pre-
vent revoked member to produce valid signatures? Then, if the group manager
reveals some secrets of a revoked member, past signatures are bound to be ex-
posed or they rather retain the unlinkability feature? This design choices are
sometimes referred as useful properties, sometimes as annoying drawbacks.

In fact, di�erent scheme security de�nitions were proposed during the years,
often with unformalized, ambigous, overlapping or even not agreed de�nitions.
Bellare et al. with [BMW03] formalized and reduced the actual desiderable
properties of a secure static group scheme to only two: full-anonymity and full-
traceability. They even drew some criticism on the authors of [ACJT00] who
claim their scheme secure, but without de�ning an attack model to the security
of the scheme.

After ACJT, membership revocation received a good deal of attention. Bres-
son et al. in [BS01] presented a mechanism based on a member revocation list
but where the length of the signature is linear in the number of revoked mem-
bers. Song in [Son01] proposed two methods for revocation and forward security
both using times periods. Ateniese et al. [AST02] work is based pretty much on
the same basis: both su�er of ine�ciency because the veri�cation task is linear
in the number of excluded group members.

The �rst step ahead on this issue was Camenisch and Lysyanskaya's work
[CL02]. They put forward a dynamic accumulator based scheme. An accumula-
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tor is a mathematical tool that accumulates primes into a short value and allows
to dynamically add and delete inputs. Using such an accumulator, applied to the
revocation of membership, does not alter the computational complexity which
is still the same of the underlaying ACJT scheme, increased by only a constant
factor, less than two. A signer, to prove membership, has then to prove that
his own certi�cate has not been accumulated into the accumulator. There ex-
ist disavantages: the members must perform local computation to update their
witness which is linear in the number of changes that have taken place from the
last update and must frequently look at the public key as veri�ers. The GM
must update the group public key every time a member enters (only in the basic
scheme) o leaves the group. It should come to no surprise that a modi�ed version
of ACJT together with the CL signature scheme extension has been employed
as the building block for the TPM, Trusted Platform Module former Palladium,
in the so called DAA (Direct Anonymous Attestation) scheme [BCC04]. [TX03]
is more e�cient than [CL02] but needs to update the group public key both
when members join and leave the group and it's not strictly ACJT related.

To satisfy the requirements of Bellare's security model, it is impossible to
revoke a group member except that all valid group members can somehow ad-
just the signing parameters or procedure, which may not always be feasible
or e�cient in practice. For the purpose of e�cient revocation, many schemes
[CG04, AST02, TX03, BS04] have adopted the so-called �veri�er-local revoca-
tion� (VLR) technique, in which veri�ers adjust their local veri�cation param-
eters to recognize corrupted group members, and group members do not need
to change the signing procedures at all. The scheme of Camenisch and Groth
[CG04], from now on CG, is the �rst to support VLR together with a relaxed
version of Bellare et al. security de�nitions. This scheme is based on the same as-
sumptions of [ACJT00, CL02] but it o�ers revocation and it is at least one order
of magnitude more e�cient than both. Later on, other schemes [Ge04, ZW08]
followed in the wake of CG but without introducing signi�cant improvements.

At the same time of Camenisch and Groth's work, Boneh, Boyen, and
Shacham [BBS04] as well as Camenisch and Lysyanskaya [CL04] presented group
signature schemes based on bilinear maps. While these schemes produce shorter
signatures, they are more computationally intensive [HP06]. In addition, they
are based on very new and less studied number theoretic assumptions.



Chapter 3

Ateniese, Camenisch, Joye,

Tsudik Scheme

This chapter provides an overview of Ateniese, Camenisch, Joye and Tsudik
group signature scheme [ACJT00]. The security of the system is based on the
SRSA assumption (see B.1.1) and on the DDH assumption (see B.2.1). The
scheme is an improvement of [CM98b, CS97].

The scheme o�ers the �rst set of properties seen in section 2.2.3. In addition,
it is provably secure, practical, scalable and dynamic, however, as seen in section
2.3, it does not support member revocation.

3.1 De�nitions

In this section, we brie�y report de�nitions useful for the understanding of the
chapter.

Token Description

GM Group manager
mi Member of the group
M = {m1, . . .mn} Set of group members
GPK Group public key
GSK Group secret key
MSK Member secret key
Msg Message to be signed/veri�ed/opened
Signature Group signature

Table 3.1: Group signature de�nitions

3.2 Procedures

In this section we review more formally the operations already entered in 2.2.2.
The scheme supports only the following operations:

9
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SETUP on input the security parameters, this algorithm outputs the GPK and
theGSK. The GPK, is then made publicly available even to non-members;

JOIN a protocol between the GM and a user outside the group that results in
the user becoming a new group member, mi. The member's output is a
membership certi�cate with aMSK;

SIGN a probabilistic algorithm that on input GPK, a membership certi�cate, a
membership secret and a messageMsg outputs a group signature Signature
of Msg;

VERIFY a deterministic algorithm for establishing the validity of an alleged
Signature of Msg with respect to a GPK;

OPEN an algorithm that, given a Msg, a valid Signature on it, a GPK and a
GSK, determines the identity mi of the signer.

3.3 Security Parameters

We report in table 3.2 the system parameters of [ACJT00] as described in the
paper and the suggested values found in [NSN04, Ngu05]1.

The parameters have the following constraints among them:

λ1 > ε(λ2 + k) + 2
λ2 > 4lp
γ1 > ε(γ2 + k) + 2
γ2 > λ1 + 2.

3.4 Scheme

In this section we describe the actual operations of the group signature scheme.
Usually, as noted in [CM98b, CM98a, CS97, CG04] it can observed that there
are two non-group signature schemes at work. The �rst is for issuing certi�cates
of membership, the second is for the actual group signing/verifying. The second
scheme is based on a proof of knowledge of a membership certi�cate through
the Fiat-Shamir heuristic. The e�ciency of the signature scheme is therefore
strictly linked to the e�ciency of the membership proof scheme. We refer the
reader to appendix B for the mathematical concepts involved.

3.4.1 SETUP

This phase involves the GM only. It must be trusted, otherwise the security of
the scheme is not guaranteed. The outputs of the phase are the GPK and the
GSK.

1We deduce from the proposed values that lp in the constraints is not the bit length of
the modulus but its number of digits (ndigits = nbits ∗ log102). This is not remarked in the
original paper.
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Parameter Description Values (bits)a

lp RSA modulus factor 512

ε
Tightness of the zero-knowledgeness
proof

1.1

λ1

Interval ranges for proving discrete
logarithm knowledge

838
λ2 600
γ1 1102
γ2 800

k Digest length 160

H A collision-resistant hash function so
that H : {0, 1}∗ → {0, 1}k

a Values from [NSN04, Ngu05].

Table 3.2: ACJT scheme security parameters

Setup (SecurityParameters)→ (GPK,GSK)

1. Set the integral ranges

Λ =]2λ1 − 2λ2 , 2λ1 + 2λ2 [
Γ =]2γ1 − 2γ2 , 2γ1 + 2γ2 [.

2. Generate a safe RSA modulus: select two random secret primes p′ and q′,
each of lp-bit length, so that p = 2p′ + 1 and q = 2q′ + 1 are safe primes.

3. Set the modulus n = pq.

4. Choose random elements a, a0, g, h ∈ QR(n). QR(n) is the subgroup of
quadratic residues modulo n, i.e. the cyclic subgroup QR(n) generated
by an element of order p′q′, where the DDH assumption is conjectured to
hold.

5. Choose a random secret element x ∈ Z∗p′q′ .

6. Set y = gx mod n.

7. Publish the GPK = (n, a, a0, y, g, h), possibly signed by some kind of long
term credentials, like digital signatures.

8. Save the GSK = (p′, q′, x).

We note that the component of the GPK must be veri�able to prevent framing
attacks and that the GM needs to prove that the RSA modulus is a product of
safe primes.
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3.4.2 JOIN

This phase involves the GM and a non-group member that applies for mem-
bership. Both of them together generate the membership certi�cate using a
zero-knowledge protocol. This phase needs to be secure, that is private and
authentic. The outputs are a membership certi�cate, a membership secret and
a new row in the membership table.

Join (GPK)→ (MSK)

1. User generates a random integer x̄ ∈]0, 2λ2 [.

2. User generates a random integer r ∈]0, n2[.

3. User sends C1 = gx̄hr mod n to the GM proving knowledge of the repre-
sentation of C1 with respect to the bases g and h.

4. GM checks that C1 ∈ QR(n). If it is false, the joining fails.

5. GM selects random α, β ∈]0, 2λ2 [ and sends them to the user.

6. User computes x = 2λ1 + (αx̄ + β mod 2λ2) and C2 = ax mod n, so that
x derives from C1, α, β.

7. User sends C2 = ax mod n to the the GM proving knowledge of (i) a
discrete logarithm, (ii) equality of two discrete logarithm, (iii) a discrete
logarithm lying in a given interval.

8. GM checks that C2 ∈ QR(n). If it is false, the joining fails.

9. GM generates a random prime e ∈ Γ and computes A = (C2a0)e
−1

mod
n2.

10. GM sends to the user the new membership certi�cate [A, e].

11. User, now membermi, veri�es that certi�cate validity with axa0 ≡ Ae mod
n.

12. User setsMSK = (A, e, x).

13. GM updates the membership table with a new row {mi, [A, e]} together
with the messages (signed by the user) exchanged during the protocol.

3.4.3 SIGN

This is the actual signing process. A valid member of the group, that is with
a valid membership certi�cate and secret, may generate a group signature on a
message. The output of the phase is the signature itself.

2e−1 is the modular inverse of e in the group of order p′q′, see [Ge04].
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Sign (GPK,MSK,Msg)→ (Signature)

1. Generate a random integer w ∈ {0, 1}2lp .

2. Compute

T1 = Ayw mod n
T2 = gw mod n
T3 = gehw mod n.

3. Choose

r1 ∈ ±{0, 1}ε(γ2+k)

r2 ∈ ±{0, 1}ε(λ2+k)

r3 ∈ ±{0, 1}ε(λ1+2lp+k+1)

r4 ∈ ±{0, 1}ε(2lp+k).

4. Compute

d1 = T r11 /(ar2yr3) mod n
d2 = T r12 /gr3 mod n
d3 = gr4 mod n
d4 = gr1hr4 mod n.

5. Compute

c = H(g ‖ h ‖ y ‖ a0 ‖ a ‖ T1 ‖ T2 ‖ T3 ‖ d1 ‖ d2 ‖ d3 ‖ d4 ‖Msg).

6. Compute

s1 = r1 − c(e− 2γ1)

s2 = r2 − c(x− 2λ1)
s3 = r3 − cew
s4 = r4 − cw (all in Z).

7. Produce
Signature = (c, s1, s2, s3, T1, T2, T3).

3.4.4 VERIFY

This phase is still part of the signing protocol. It veri�es if an alleged group
signature is valid with respect to a given GPK. The veri�er could be a non-group
member: he only needs the GPK. The output of the procedure is a boolean
value that is true if the signature is valid, false otherwise.
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Verify (GPK,Msg, Signature)→ (V alidSignature?)

1. Compute
c′ = H(g ‖ h ‖ y ‖ a0 ‖ a ‖ T1 ‖ T2 ‖ T3 ‖

ac0T
s1−c2γ1
1 /(as2−c2

λ1
ys3) mod n ‖ T s1−c2

γ1

2 /gs3 mod n ‖

T c2 g
s4 mod n ‖ T c3 gs1−c2

γ1
hs4 mod n ‖Msg).

2. Check if

s1 ∈ ±{0, 1}ε(γ2+k)+1

s2 ∈ ±{0, 1}ε(λ2+k)+1

s3 ∈ ±{0, 1}ε(λ1+2lp+k+1)+1

s4 ∈ ±{0, 1}ε(2lp+k)+1.

3. If the check is positive and c = c′ then output true, otherwise false.

3.4.5 OPEN

With this operation the GM revokes the anonymity feature and can retrieve
the identity of the member who signed the group signature. The output of this
phase is identity of the member.

Open (GPK,Msg, Signature,GSK)→ (mi)

1. Check the validity of the group signature with the VERIFY procedure.

2. Compute A = T1/T
x
2 mod n.

3. Recover the identity of the signer, mi, searching for A in the membership
table.

4. Prove that loga y = logT2
(T1/A mod n).



Chapter 4

Camenisch, Groth Scheme

We provide in this chapter a description of Camenisch and Groth group signa-
ture scheme [CG04]. Its foundations are the same assumptions of [ACJT00],
SRSA and DDH respectively (see B.1.1 and B.2.1).

The scheme is built on the second, more formal, set of properties seen in
section 2.2.3, based on the work of [BMW03]. Once again, we point the reader
to [CG04] for the actual proofs of these properties and the adversary model. In
addition to the above properties, it is provably secure, practical, scalable, dy-
namic and, above all, supports member revocation. It improves ACJT, claiming
to be more than one order of magnitude more e�cient than pure ACJT.

In the original paper, three di�erent versions of the scheme are described:
one for static groups only, the others for dynamic groups. The dynamic case
is more complex and so the authors o�er di�erent levels of anonymity revoca-
tion. The �rst revocation mechanism only revokes the possibility to produce
new signatures to the revoked member, thus retaining the anonymity of past
signatures. The second method, called full revocation, reveals the identity of
the member of all signatures signed by a revoked member certi�cate. We will
take into account only the full revocation variant.

4.1 De�nitions

The de�nitions used in this chapter are the same as in section 3.1. We add only
a concept, due to CG speci�city:

Token Description

MRL Member revocation list

Table 4.1: Group signature de�nitions (CG spe-
ci�c)

15
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4.2 Procedures

The procedures of this scheme are the same as the ones in section 3.2. However,
since CG supports VLR, we have two procedures more:

REVOKE a procedure that allows the GM to revoke the signing capability of a
group member. This is equivalent to remove the member from the group;

FULL-REVOKE a procedure that allows the GM to reveal a secret that �opens�
every signature signed by a revoked member.

As we have already noted, the scheme supports the full revocation mode
that allows the group manager to open every signature produced by a revoked
group member. This feature clashes with the stronger full-anonymity require-
ment imposed by [BMW03]. Therefore for the group signature scheme with full
revocation, Camenisch and Groth de�ne a weaker security assumption where
anonymity is granted if both GSK andMSK are not exposed. A byproduct of
this choice is that a member can prove that he generated a speci�c signature;
in [KY04] this feature is called claiming.

4.3 Security Parameters

In table 4.2 we review the meaning of the security parameters and the suggested
values as they are described in [CG04] and [HP06]. For a better understanding
we have to premise that the group signature scheme is based on two groups:
one is QRn, the group of quadratic residue modulo a safe prime RSA modulus,
and the other is of order Q in Z∗P , where Z∗P is the group of positive integers
smaller than P and coprime with it and Q|P − 1.

Parameter Description Values (bits)a

ln RSA modulus 2048
lP Order of the group Z∗P 2048
lQ Order of the group in Z∗P , whereQ|P−1 282
lE Prime number for member certi�cate 504

le
Number large enough to assign all
members di�erent numbers

60

ls
Tightness of the zero-knowledgeness
proof

60

lc Digest length 160

H A collision-resistant hash function so
that H : {0, 1}∗ → {0, 1}lc

a Values from [CG04, HP06].

Table 4.2: CG scheme security parameters
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The parameters have the following constraints among them:

lc + le + ls + 1 < lQ

lQ + lc + ls + 1 < lE

lE < ln/2.

4.4 Scheme

In this section we describe the actual operations of the group signature scheme
with full revocation.

4.4.1 SETUP

In the static group scenario, that we are not considering, the key generation
algorithm is run by a trusted third party because it outputs, together with the
group keys and system parameters, all membership certi�cates in advance. In
the dynamic case this constraint is not needed since the secrets are generated
jointly by both party, during the JOIN. Therefore this phase works like ACJT's
SETUP and outputs the group keys and the system parameters.

Setup (SecurityParameters)→ (GPK,GSK)

1. Generate a safe modulus: select two random primes p′ and q′, so that
p = 2p′ + 1, q = 2q′ + 1 are safe primes.

2. Set the modulus n = pq so that n is of length ln bits.

3. Choose random elements a, g, h ∈ QR(n), where QR(n) is the subgroup
of quadratic residue modulo n, i.e. the cyclic subgroup QR(n) generated
by an element of order p′q′.

4. Select two random primes Q and P , of lQ and lP -bit respectively, so that
Q|(P − 1).

5. Let F as an element of order Q in Z∗P .

6. Choose at random XG, XH ∈ ZQ.

7. Set G = FXG , H = FXH mod P .

8. Choose random elements w, f ∈ QR(n).

9. Publish the GPK = (n, a, g, h,Q, P, F,G,H,w, f).

10. Save the GSK = (p, q,XG).



CHAPTER 4. CAMENISCH, GROTH SCHEME 18

4.4.2 JOIN

As in ACJT, during this phase the GM and a would-be-member agree on a
membership secret jointly generated. This protocol is more slender than ACJT's
and only requires two rounds. The idea is that the member generates a secret by
himself and then gets a Camenisch-Lysyanskaya signature [CL03] on it from the
GM . In the exchange the element wi is generated for revocation purposes. At
the same time, for the full revocation to work we force the member to generate
an element si: if this token is exposed by the group manager it is easy to link
the member to every signature he has made.

Join (GPK)→ (MSK)

1. User i generates a random integer xi ∈ ZQ.

2. User computes Yi = Gxi mod P .

3. User forms a committment gxihr
′
i mod n to xi, where r′i is a random num-

ber in Zn.

4. User selects si ∈ ZQ.

5. User sends Yi, gxihr
′
i mod n, si to the GM .

6. GM selects ei ∈ {0, 1}le such that Ei = 2lE + ei is prime.

7. GM computes wi = wE
−1
i mod n.

8. GM picks a random r′′i ∈ Zei .

9. GM sets yi = (afsigxihr
′
i+r
′′
i )E

−1
i mod n1.

10. GM sends back wi, yi, Ei, r′′i to the user.

11. Member mi setsMSK = (wi, xi, ri = r′i + r′′i , yi, ei).

4.4.3 SIGN

A valid member may sign on behalf of the group, producing a valid group signa-
ture. An important note is that a revoked member can still produce signatures
under the old GPK and claim its validity the key was valid: an obvious coun-
termeasure is the addition of a timestamp to signatures and GPKs.

Sign (GPK,MSK,Msg)→ (Signature)

1. Select a random integer r ∈ {0, 1}ln/2 and R ∈ ZQ.

2. Set u = hryiwi mod n.

1E−1
i is the modular inverse of E in the group of order p′q′.



CHAPTER 4. CAMENISCH, GROTH SCHEME 19

3. Compute

U1 = FR mod P

U2 = GR+xi = GRYi mod P

U3 = HR+ei mod P
U4 = Usi1 mod P

4. Choose

rs ∈ {0, 1}lQ+lc+ls

rx ∈ {0, 1}lQ+lc+ls

rr ∈ {0, 1}ln/2+lc+ls

re ∈ {0, 1}le+lc+ls

RR ∈ ZQ

5. Compute

v = uref−rsg−rxhrr mod n

V1 = FRR mod P

V2 = GRR+rx mod P

V3 = HRR+re mod P
V4 = Urs1 mod P

6. Compute

c = H(GPK ‖ u ‖ v ‖ U1 ‖ U2 ‖ U3 ‖ U4 ‖ V1 ‖ V2 ‖ V3 ‖ V4 ‖Msg)

7. Compute

zs = rs + csi

zx = rx + cxi

zr = rr + c(−ri − rEi)
ze = re + cei

ZR = RR + cR mod Q

8. Produce

Signature = (c, u, U1, U2, U3, U4, zs, zr, zx, ze, ZR)
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4.4.4 VERIFY

Basically this phase operates as the namesake one in ACJT. A user, even a non
member, may check the validity of a signature using the GPK. The drawback
of supporting revocation is that every time a user is going to undertake a verify
operation, he must refresh the GPK with the newest one available. Same advise
regarding timestamps, seen in the previous operation, applies here.

Verify (GPK,Msg, Signature)→ (V alidSignature?)

1. Compute

v = (aw)−cf−zsg−zxhzruc2
lE+ze mod n

V1 = U−c1 FZR mod P

V2 = U−c2 GZR+zx mod P

V3 = U−c3 HZR+ze mod P

V4 = U−c4 Uzs1 mod P

2. Check if

ze ∈ {0, 1}le+lc+ls

zs ∈ {0, 1}lQ+lc+ls

zx ∈ {0, 1}lQ+lc+ls

3. Compute

c′ = H(GPK ‖ u ‖ v ‖ U1 ‖ U2 ‖ U3 ‖ U4 ‖ V1 ‖ V2 ‖ V3 ‖ V4 ‖Msg)

4. if the check is positive and c = c′ the output true, otherwise false.

4.4.5 OPEN

This operation allows the GM to retrieve the identity of a member from a signed
message.

Open (GPK,Msg, Signature,GSK)→ (mi)

1. Check the validity of the group signature with the VERIFY procedure.

2. Compute
id = U2U

−XG
1 mod P.

3. Recover the identity of the member mi, searching for id in the member
list.
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4.4.6 REVOKE

This procedure revokes a user membership in the group, so that the member
may no longer sign messages. In the �rst part the GM publishes a secret owned
by the revoked member in a MRL and updates the GPK. At a later stage the
members update their own secret to continue to be able to prove membership.
Thus, we divide this operation in two distinct parts.

Revoke (Group Manager) (GPK,mi)→ (GPK,MRL)

1. GM recovers Ei from the member's data contained in the member list
using mi and publishes it.

2. GM updates the GPK, changing the old w to contain the wi of the user
(where wi = wE

−1
i ). Now the revoked membermi cannot prove knowledge

of a root of w anymore.

Revoke (Member) (GPK,MSK,MRL)→ (MSK)

1. Any member mj still in the group retrieves from the MRL the published
Ei.

2. He then selects α, β so that αEi + βEj = 1.

3. He updates his ownMSK computing wj = wβi w
α
j mod n.

4.4.7 FULL REVOKE

This procedure allows to revoke anonymity of signatures produced under an old
GPK thanks to the disclosing of si. As before, we split the operation into two
parts.

Full Revoke (Group Manager) (mi)→ (MRL)

1. GM recovers si from the member's data in the member list using mi and
publishes it in the MRL.

Full Revoke (Member) (GPK,Msg, Signature,MRL)→ (RevokedMemberSignature?)

1. Check the validity of the group signature with the VERIFY procedure.

2. Anyone, user or member, may check if a signature was signed by the

revoked member mi. It is su�cient to check if U
P−1
Q

4 = U
P−1
Q si

1 mod P .

3. If the check is positive outputs true, otherwise false.



Chapter 5

Development of a Group

Signature Framework

During our research process we found out that there is no framework that takes
advantage of the services o�ered by group signatures. Thus, the goal of this
chapter is to �ll the gap left by the cryptographic community and to develop a
framework supporting group signatures.

5.1 Development Process

After an initial careful consideration, we decided to adopt a waterfall model for
our software development process. Our aim is not to develop a speci�c applica-
tion, but, more generally, an experimental framework for group signatures. The
requirements of our development, even if very general, are set in stone before
the process even starts. We are not even truly interested in a formal veri�cation
of the security of our product at the end: our goal is just to show the feasibility
of such a framework. Therefore, the waterfall model could probably be the best
choice for our situation. In the following, we will describe the following phases:

• Requirements speci�cation

• Design

• Implementation

• Testing

• Deployment

5.2 Requirements Speci�cation

5.2.1 Functional Requirements

• standardized framework for group signatures;

• application independence;

22



CHAPTER 5. DEVELOPMENTOF AGROUP SIGNATURE FRAMEWORK23

• implementation independence;

• algorithm independence and extensibility;

• the framework should support ACJT scheme;

• the framework should support CG scheme.

Let us brie�y comment on about these requirements, since they could appear
high-sounding. Once more we should point out our goal: a framework that
o�ers group signature services through standardized interfaces. The idea of a
framework is quite obvious: if properly developed, it promotes design and code
reuse. It should be application independent too, in the sense that we have no
speci�c client application in mind for its use and we would like to adopt it to a
broad range of problems.

Besides, it should be bound neither to any speci�c group signature scheme
nor to a speci�c scheme implementation. On the contrary, it should be easy
enough to add additional schemes or di�erent implementations, without rewrit-
ing the framework itself. In other words, we want a framework as low-level
as possible, without breaking the abstraction that hides the inner workings of
di�erent group signature schemes under it. In addition, to prove the feasibility
of our work, we will integrate the two schemes previously analyzed, ACJT and
CG.

5.2.2 Non-Functional Requirements

• cross-platform.

Regarding the non-functional requirements, our framework should run ideally
on many di�erent platforms, of course on standard desktop computers or note-
books equipped with Windows, MacOS or any �avour of Linux, but since we
imagine a future where group signature services will be very important for mo-
bility, it should even be possible to run it on handheld devices, like PDA or
cellphones. For this reason, Java, thanks to its high portability, is a good choice
as a programming language. We do not set any hardware constraint on the cho-
sen platform as long as it is able to run a Sun's Java Virtual Machine[Mic10b].

5.3 Design

As we can see from the requirements, we are not going to develop a single
application but rather a library for group signatures. Since this objective is
quite ambitious, at the beginning of our design phase, we researched in the
literature and in the public domain for established cryptographic frameworks
that could satisfy part or all of our requirements. Basically, we found only two
mature choices: Sun's own Java Cryptography Architecture [Mic10a] and the
Bouncy Castle Crypto APIs from the Legion of the Bouncy Castle [otBC10]. We
decided to analyze the former because it o�ers an all-ecompassing architecture
for supporting cryptography that form the basis even for the latter.
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5.3.1 Java Cryptography Architecture

The security of the Java platform is granted by a large set of APIs, implementa-
tions and security algorithms and protocols [Mic10c] that provides a standards-
based extensible architecture for security and interoperability. The Java Cryp-
tography Architecture (JCA) [Mic10a] is the piece of the architecture that takes
care of cryptography and o�ers APIs for services like digital signatures, message
digests, encryption, key management and generation, and secure random num-
ber generation, only to name a few. We report from the speci�cations some key
principles that guided the design of JCA, that we �nd of interest in our case:

implementation independence applications do not need to implement se-
curity algorithms. Rather, they can request security services from the
Java platform. Security services are implemented in providers, which are
plugged into the Java platform via a standard interface;

algorithm independence and extensibility the Java platform includes a
number of built-in providers that implement a basic set of security ser-
vices that are widely used today. However, some applications may rely on
emerging standars not yet implemented or on proprietary services. The
Java platform supports the installation of custom providers that imple-
ment such services.

5.3.1.1 Concepts

The main concepts related to JCA are:

Cryptographic Service a cryptographic primitive, like digital signature, en-
cryption or message digest;

Cryptographic Algorithm a speci�c algorithm that implements a speci�c
cryptographic service and meets all its requirements, like RSA as digital
signature or encryption scheme;

Engine a class that provides the end user with a cryptographic service. It
either provides:

• cryptographic operations, like DigitalSignature, Encryption andMes-
sageDigest ;

• generators or converters of cryptographic material, like keys and al-
gorithm parameters;

• objects that incorporate cryptographic data to use at higher layers
of abstraction, like keystores or certi�cates.

Example of engine classes are Signature or MessageDigest, but more or
less every concept of modern cryptography is represented, except group
signatures of course;

Cryptographic Service Provider (CSP) or more simply Provider. The provider
is a package, or a set of packages, that contains the concrete implementa-
tions of one or more cryptographic services;
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Provider is a class that publishes all the services implemented in the CSP. The
use of the same name for both this class and the CSP may cause some
confusion in the terminology, but from a pratical point of view the two
concepts overlap.

5.3.1.2 Architecture

As we have seen cryptographic services are o�ered through the de�nition of en-
gine classes. An engine class de�nes a high-level Application Programming In-
terface (API), with public service-generic methods that a client might call, thus
achieving algorithm independence. For implementation independence instead,
every CSP's implementation class must conform to a �xed interface. Therefore
an instance of an engine class should have one or more CSP's implementation
classes that have methods with the same signature. Invocation of API methods
are routed to the CSP's implementation through a Service Provider Interface
(SPI). A SPI is an abstract class, separated from the engine class, that declares
an interface that every CSP's implementation of an algorithm must subclass
and implement all the abstract methods. The name of a SPI class is the same
as the name of the service class su�xed with �Spi�: the SPI for the Signature
engine is SignatureSpi.

For example. if we would like to implement a new digital signature algorithm,
say �Foo�, we must �rst de�ne the FooProvider class that states the link between
our implementation and the Signature service. Then we must subclass the
class SignatureSpi, de�ning our implementation of every abstract methods,
for instance a class called FooSignature. A client application may then use
this implementation through the standard Signature engine class.

The focal point of the whole architecture is the Provider abstract class.
Every engine class contains an instance of this class. Every time we want to
add an implementation for a cryptographic service we must subclass this class
that contains methods to access the provider's name and version and to register
a list of implementations to speci�c services. In order to be found and usable, a
Provider must be installed and registered either statically or dinamically. The
standard Sun's Java distribution ships already with a good list of providers for
the majority of services usually used.

The mechanism for polling and instantiating a CSP's concrete implementa-
tion is achieved via the factory and delegation design patterns. In fact, when a
particular implementation instance of a speci�ed service is requested by a client,
the framework calls the getInstance() factory method. The method queries
the installed security Providers for that particular implementation of the ser-
vice and if one Provider's o�er matches, an instance of the implementation is
then returned to the client. At this point, the engine class performs the task
advertised by its interface through delegation to the Provider's implementation
instance.
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Figure 5.1: JCA Architecture

Figure 5.2: JCA Architecture - Signature Example
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5.3.1.3 Example: RSA keypair generation

In this �rst example, we give a pratical example of how is it possible to use the
framework to produce a RSA keypair12.

// RSA Keypair genera t ion
KeyPairGenerator keyGen = KeyPairGenerator . g e t In s tance ( "RSA" ) ;
keyGen . i n i t i a l i z e (1024 , new SecureRandom ( ) ) ;
KeyPair keyPair = keyGen . generateKeyPair ( ) ;

Listing 5.1: RSA Keypair generation

5.3.1.4 Example: RSA digital signature

In this second example we show how is it possible to produce and verify a RSA
digital signature, using the RSA keypair generated in previous example.

// The message to s i gn
St r ing message = new St r ing ( "Lorem ipsum" ) ;
byte [ ] messageBytes = message . getBytes ( ) ;

// RSA Signature genera t ion
Signature s i gna tu r e = Signature . g e t In s tance ( "SHA1withRSA" ) ;
s i gna tu r e . i n i t S i g n ( keyPair . g e tPr iva t e ( ) , new SecureRandom ( ) ) ;
s i gna tu r e . update ( messageBytes ) ;
byte [ ] s i gnatureByte s = s i gna tu r e . s i gn ( ) ;

// RSA Signature v e r i f i c a t i o n
s i gna tu r e . i n i tV e r i f y ( keyPair . ge tPub l i c ( ) ) ;
s i gna tu r e . update ( message ) ;
boolean i s V e r i f i e d = s i gna tu r e . v e r i f y ( s i gnatureByte s ) ;

Listing 5.2: RSA Digital Signature generation and veri�cation

5.3.2 Domain Analysis

While the JCA framework gives good insights into how a cryptographic frame-
work should be structured, it is impossible at the present state to map a GS
scheme to the services already o�ered by the JCA. Anyway we would not like to
throw away the elegant, even if complex, architecture and if possible we would
like to reuse it to give a direction to our work. In fact, thanks to the extendibil-
ity of the framework we believe it is possible to de�ne services that we could
then integrate into it.

At this point, for the design of the framework, is important to outline:

• high-level data structures to manipulate group signature concepts;

• a group of services that can be traslated to engine classes;

• an interface for every service.

1In this particular case we are using one of the default Providers that comes with the
standard Java installation. Therefore it is already statically installed and registered.

2From now on we will try to keep the code simple. Exception handling will be ignored.
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We should thus review the GS schemes in a more abstract way in terms
of data structures and operations and extract a small number of services and
characterize them in terms of inputs and outputs3.

We start our revision with the abstraction of data structures required by the
GS schemes. We list and describe them here in table 5.1.

Data structure Description

GSKey
top-level abstraction for a key
used in a group signature scheme

GSPublicKey public key used in a scheme
GSPrivateKey private key used in a scheme

GSKeyPair
keypair composed by a GSPub-
licKey and GSPrivateKey

GSGroupCerti�cate digital certi�cate for a GPK
GSMemberCerti�cate digital certi�cate for aMSK

GSSecurityParameters
set of security parameters used in
a group

GSIdentity
very high-level abstraction for a
group member's identity data

GSRevocationList Member revocation list

Table 5.1: Group signature data structures

We can now analyze the operations of a GS scheme. We have already noted
a dichotomy in our previous review of the schemes. In fact, the schemes are
cryptosystems that de�ne a coupling between two di�erent procotols:

• a protocol for �signature-related� operations like sign, verify and open;

• a protocol for group �maintenance� operations, including setup, growing
and possibly shrinking of the group.

We use this remark in our favour to start our analysis.

5.3.2.1 Signature-related operations

The �rst protocol we pinpointed �ts perfectly in the set of �cryptographic op-
erations� and is quite similar to the interface of the Signature service of the
standard library. In our case for SIGN and VERIFY the inputs are slightly di�er-
ent and we have an additional operation: OPEN. However, we can abstract the
three operations in the same service since their work�ow is similar:

1. initialization with a key (for instance a GSPrivateKey or a GSPub-
licKey);

2. loading of the message to be signed/veri�ed/opened;

3We note at this point that we will support �out of the box� GS schemes based on SRSA
and DDH assumptions (see B.1.1 and B.2.1), since we will factor the basic math directly
into the framework. It could be possible however that newer schemes (for example based on
bilinear maps) could �t in the framework, even without modifying it, on the condition that
they support their own math.
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3. execution of the task (passing the signature if verifying or opening);

4. collection of the output.

Following this analysis, the translation from abstact operations to a GSSignature
service is quite straightforward. We should note that such a service could be
used either by a GM or by a group member. We can now follow the sintax seen
in listing 5.2 to de�ne in listing 5.3, the methods that compose the interface of
our GSSignature cryptographic service in terms of the data structures described
in table 5.1:

// fo r SIGN
public void i n i t S i g n (GSPublicKey gpk , GSPrivateKey memberKey ,

GSSecurityParameters params ) ;
public byte [ ] s i gn ( ) ;

// fo r VERIFY
public void i n i tV e r i f y (GSPublicKey gpk , GSSecurityParameters params

)
public boolean v e r i f y (byte [ ] s i gna tu r e ) ;

// fo r OPEN
public void in itOpen (GSPublicKey gpk , GSPrivateKey gsk )
public GSIdentity open (byte [ ] s i gna tu r e ) ;

// accessory method fo r l oad ing the message
public void update (byte [ ] messageBytes )

Listing 5.3: GSSignature service interface

5.3.2.2 Group maintenance operations

The second protocol is trickier to turn into a service/engine class. The temp-
tation is to manage the �maintenance� of the group outside the framework,
however we think the group could �t in guideline: �objects that incorporate
cryptographic data to use at higher layers of abstraction�, if we stretch the def-
inition. This new service is prerogative of a GM , since he is the only one with
the authority and capabilities to create new groups or to enlarge and shrink the
set of members. Before de�ning the interface of the service we still have to solve
three issues.

If the previous service was more signature-oriented, this one is more focused
on managing members. The �rst issue is related to data structures. Every
scheme solves membership internally with di�erent data structures, so we choose
a very high level abstraction to represent a member, GSIdentity. This data
structure contains the identity of the member and some kind of data representing
membership proof. Since outside the framework this identity has very little
meaning, we will manage the list of members inside the framework. The opposite
choice is even possible to gain �exibility but losing algorithm independence. For
the same reason, we will handle the member revocation list, MRL, inside the
framework.

For security reasons we believe the GM should always be kept o�ine in a
network: he takes care of the GSK and the list of member identities: both of
them should be kept secret. Furthermore, except for the JOIN action he has not
direct contact with users, members or non-members alike. In fact, the users are
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only interested in up-to-date GPK andMRL, which can be published anywhere
without the need for the GM to be online. The JOIN operation arises the second
issue since it is conceptually di�erent: it is a n-round protocol between the GM
and a would-be-member. In our opinion, this exchange should be executed on a
secure and private channel and entirely o�ine. The model we propose is similar
to the subscription of a new mobile contract: the user goes physically to an
authorized vendor, signs a contract and interactively gets some kind of proof of
membership in return. We are aware that there are many problems connected
to this choice that can even break the security of the schemes, but we think
it to be safer even if not less problematic than the online scenario. We will
not dwell on this matter and we will consider the JOIN procedure as part of
our service but without the requirement of being a protocol between di�erent
parties. A proper solution to this problem will not be part of this work but will
be considered as an future extension.

The last issue concerns revocation. The sharp reader might already have
noticed that both REVOKE operations are only partially responsibility of the GM .
For the simple REVOKE every member still in good standing for membership has
to make a bit of computation to prove that he has not been removed from the
group. We will move this share of the operation in a new service, only for
members. On the contrary, FULL-REVOKE for a member could be considered as
a special version of OPEN, so we will add it in the GSSignature service.

After solving our last concerns we are now ready to de�ne two additional
services and their interfaces to our framework: GSGroupManager and GSMem-
berManager in listings 5.4 and 5.5 respectively. The extension of the interface
of GSSignature could be found in listing 5.6.

// fo r SETUP
public GSKeyPair doSetup ( GSSecurityParameters params ) ;
public GSGroupCert i f icate bu i l dGroupCer t i f i c a t e (GSPublicKey gpk ,

S t r ing i s s u e r , S t r ing group , Date startDate , Date expiryDate ,
int serialNumber , GSSecurityParameters params ) ;

// fo r JOIN
public GSMemberCertif icate joinGroup ( St r ing member ,

GSGroupCert i f icate groupCert , GSPrivateKey gsk )

// fo r REVOKE
public GSPublicKey doRevoke (GSPublicKey gpk , GSIdentity member) ;

// fo r FULL−REVOKE
public void doFullRevoke ( GSIdentity member) ;

public GSRevocationList ge tRevocat ionL i s t ( ) ;

Listing 5.4: GSGroupManager service interface

// fo r REVOKE
public GSPrivateKey updateMemberKey (GSPublicKey gpk ,

GSRevocationList l i s t , GSPrivateKey gsk )

Listing 5.5: GSMemberManager service interface

// fo r FULL−REVOKE
public void in i tRevoke (GSPublicKey gpk , GSRevocationList l i s t )
public boolean revoke (byte [ ] s i gna tu r e ) ;
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Listing 5.6: GSSignature service interface extension

5.4 Implementation

In this section we will outline the implementation phase of our software develop-
ment process. There will be two main parts: the �rst related to the framework
itself and the second to the implementation of the ACJT scheme into the frame-
work.

5.4.1 Framework

5.4.1.1 Data Structures

We implemented the framework following a bottom-up approach starting �rst
with the data structures. In fact, we traslated into Java interfaces, abstract
classes or �nal classes the data structures speci�ed during the design phase.
They should provide little or no code at all and be very abstract, since they
represent concepts that every scheme should override or rede�ne. In addition,
the structures related to keys mimic the case of the corresponding interfaces of
the standard JCA framework, like Key. This is the case of GSKey, that should
be only considered as a way to group cryptographic keys and to provide type
safety. We report the implementation of some data structures as example in
listings 5.7, 5.8, 5.9, 5.10 and 5.11.

import java . s e c u r i t y . Key ;

public interface GSKey extends Key
{

public int g e tS i z e ( ) ;
public St r ing getAlgor ithm ( ) ;

}

Listing 5.7: GSKey interface

import java . s e c u r i t y . PrivateKey ;

public interface GSPrivateKey extends GSKey , PrivateKey
{

}

Listing 5.8: GSPrivateKey interface

import java . s e c u r i t y . PublicKey ;

public interface GSPublicKey extends GSKey , PublicKey
{

}

Listing 5.9: GSPublicKey interface
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import java . s e c u r i t y . KeyPair ;

public f ina l class GSKeyPair
{

private GSPublicKey publicKey ;
private GSPrivateKey privateKey ;

public GSKeyPair (GSPublicKey publicKey , GSPrivateKey
privateKey )

{
this . publicKey = publicKey ;
this . pr ivateKey = privateKey ;

}

public GSKeyPair ( KeyPair keyPair )
{

this . publicKey = (GSPublicKey ) keyPair . ge tPub l i c ( ) ;
this . pr ivateKey = (GSPrivateKey ) keyPair . g e tPr iva t e

( ) ;
}

public GSPublicKey getPub l i c ( )
{

return publicKey ;
}

public GSPrivateKey ge tPr iva t e ( )
{

return privateKey ;
}

}

Listing 5.10: GSKeyPair �nal class

import java . s e c u r i t y . spec . AlgorithmParameterSpec ;

public interface GSSecurityParameters extends

AlgorithmParameterSpec
{

public byte [ ] getEncoded ( ) ;
public St r ing toS t r i ng ( ) ;

}

Listing 5.11: GSSecurityParameters interface

As we have seen the implementation of these structures is very straightfor-
ward. The case of certi�cates is more complex: they should group keys with
additional informations, such as validity time and scope, and optionally, be
signed with long-term credentials (like standard digital signatures). Once again
we prefer to imitate already established cases instead of putting forward new
formats. For this end, we chose a X.509-like format for the representation of
our certi�cates. Following X.509 certi�cate structure, GSGroupCertificate is
a wrapper around:

• Version

• Serial Number

• Group Signature Algorithm
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• Issuer

• Validity

� Not Before

� Not After

• Subject

• Timestamp

• GSPublicKey

• GSSecurityParameters

• Digital (long-term) Signature

The structure GSMemberCertificate is quite similar, but with a main dif-
ference: it can not be signed since theMSK is prone to change during its life
due to changes made by members. Thus, signing makes no sense. With this
premise we see here the structure of a GSMemberCertificate:

• Version

• Serial Number

• Group Signature Algorithm

• Issuer

• Validity

� Not Before

� Not After

• Subject

• Timestamp

• GSSecurityParameters

• GSPrivateKey

The last structure to be implemented, GSIdentity, is probably the most
abstract. Basically, it is just a �blob� of membership data wrapped around
the name of the member, because we do not want to expose unnecessary details
related to a speci�c scheme. We even said that we will manage identities �inside�
the framework. The idea is simple: we will save every member identity in a
list structure and allow every scheme to provide e�cient and speci�c search
algorithms for the list. We see the code in listing 5.12.

public class GSIdentity
{

protected St r ing sub j e c t ;
protected Object [ ] data ;

public GSIdentity ( S t r ing subject , Object [ ] data )
{
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this . s ub j e c t = sub j e c t ;
}

public St r ing getName ( )
{

return sub j e c t ;
}

public Object [ ] getData ( )
{

return data ;
}

public void setData ( Object [ ] data )
{

this . data = data ;
}

}

Listing 5.12: GSIdentity class

5.4.1.2 Engine Classes

Having described the data structures involved in our framework implementation,
we can now focus our attention on the implementation of the engine classes.
As we already noted during the design phase, algorithm and implementation
independence are achieved by de�ning types of cryptographic services and the
related engine classes that provide their functionalities. This job is actually
split in two parts. The �rst is directed client-side with the implementation of
the outer interface, the second to the de�nition of the related SPI class the every
provider supplying that service must implement.

The complex part is however the integration of the two. The JCA uses two
cooperating design patterns for the collaboration of the parts: abstract factory
and delegation.

Abstract Factory provides a way to encapsulate a group of individual facto-
ries. The client software creates a concrete implementation of the abstract
factory and then uses the generic interface to create the concrete object.
The client may request a particular �avour of the concrete object being
created but in any case he uses only the generic interfaces of the object.

Delegation provides a mean for an object (the delegator) to delegate a task
to an associated helper object (the delegate). This pattern is not only
important by itself but even as the building block behind composition.

To show the actual implementation we provide here only the class diagrams
of the two sample services, GSSignature in �gure 5.3 and GSGroupManager in
�gure 5.4. We advise the reader to refer to the code for more details.

5.4.2 Group Signature Scheme

In this section we will analyze the implementation of ACJT, as an example of
how a group signature scheme may be integrated in our framework.

The actions required are resumed here:
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Figure 5.3: GSSignature service class diagram

Figure 5.4: GSGroupManager service class diagram
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• de�nition of the Provider;

• implementation of the data structures;

• implementation of the service(s).

5.4.2.1 Provider de�nition

The Provider class is the binding agent between the framework and the algo-
rithm implementation. It de�nes which services o�er that particular implemen-
tation. We illustrate in listing 5.13 the class de�nition.

import java . s e c u r i t y . Provider ;

public class ACJTProvider extends Provider
{

private stat ic f ina l long se r ia lVers ionUID =
3780608368753039174L ;

private stat ic f ina l St r ing NAME = "ACJT" ;
private stat ic f ina l double VERSION = 2 . 0 ;
private stat ic f ina l St r ing INFO = "ACJT Group Signature

Provider by Diego Fe r r i 2010" ;

public ACJTProvider ( )
{

super (ACJTProvider .NAME, ACJTProvider .VERSION,
ACJTProvider . INFO) ;

put ( "GSSignature .ACJT" , "com . unibs . gs . a c j t .
ACJTSignature" ) ;

put ( "GSGroupManager .ACJT" , "com . unibs . gs . a c j t .
ACJTGroupManager" ) ;

put ( "KeyPairGenerator .ACJT" , "com . unibs . gs . a c j t .
ACJTGroupKeyPairGenerator" ) ;

}

}

Listing 5.13: ACJTProvider class

From the code we gather that three services are registered: the framework's
GSSignature and GSGroupManager and in addition a KeyPairGenerator. The
latter is a service from the standard package for which we provide an algorithm
implementation. The target of the service is to produce a group public/private
keypair given the securoty parameters. In our case it matches the SETUP opera-
tion of the scheme. Of course, we do not register any GSMemberManager service,
since in ACJT there is no need to update theMSK. This is a plus of this ar-
chitecture: during runtime this situation will be dealt and a standard exception
will be thrown to indicate that no actual implementation of the service exists
or is registered.

5.4.2.2 Data Structure and Service Implementation

It is mandatory to rede�ne the abstract, generalistic framework's data struc-
tures. However, even in this case our data structures are very simple. Their
main contribute to the project is to convert cryptographic keys, certi�cates and
parameters from bytes to structures and viceversa. The structures implemented
are listed in table 5.2.
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Data structure Description

ACJTKey
abstraction for a key to provide
type-safety

ACJTPublicKey
public key interface to provide
type-safety

ACJTPrivateKey
private key interface to provide
type-safety

ACJTGroupPublicKeyImpl group public key
ACJTGroupPrivateKeyImpl group private key
ACJTMemberKeyImpl member secret key
ACJTGroupCerti�cate group certi�cate
ACJTMemberCerti�cate member certi�cate
ACJTSecurityParameters security parameters
ACJTIdentity group member's identity data

Table 5.2: ACJT data structures

As for the framework code we only outline the service implementations with
the class diagrams, see �gures 5.5 and 5.6. We advise the reader to refer to the
code for more details.

5.4.3 Package Organization

In table 5.3, 5.4 we list the package structure of the framework and of ACJT
implementation. Even in this case, when possible, we mimic JCA's structure.

Package Content

com.unibs.gs

GSSignature

GSSignatureSpi

GSGroupManager

GSGroupManagerSpi

GSMathCore

com.unibs.gs.interfaces

GSKey

GSKeyPair

GSPublicKey

GSPrivateKey

GSRevocationList

GSSecurityParameters

GSIdentity

Table 5.3: Framework package organization
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Figure 5.5: ACJTSignature service class diagram

Figure 5.6: ACJTGroupManager service class diagram
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Package Content

com.unibs.gs.acjt

ACJTGroupKeyPairGenerator

ACJTGroupManager

ACJTGroupPrivateKeyImpl

ACJTGroupPublicKeyImpl

ACJTMemberKeyImpl

ACJTProvider

ACJTSecurityParameters

ACJTSignature

ACJTSignatureImpl

com.unibs.gs.acjt.certs
ACJTGroupCertificate

ACJTMemberCertificate

com.unibs.gs.acjt.interfaces
ACJTKey

ACJTPrivateKey

ACJTPrivateKey

Table 5.4: ACJT package organization

5.5 Testing

Testing was performed using a black box approach. Our aim was to test the
functionality of the whole system, from an external point of view. Since the
structure of engine classes, SPI classes and providers, this phase could be con-
sidered integration and system testing at the same time.

For determining the inputs and outputs of the classes, we employed tech-
niques such as equivalence partitioning and boundary-value analysis.

The testing activity revealed a tight coupling between tests. Many methods
need to be performed in a sequential manner, this behaviour mirrors the se-
quence of usual operations needed for the use of group signatures. For instance,
for testing Open it is mandatory to test this sequence: SETUP then JOIN then
SIGN then OPEN.

All tests were successful and performed using JUnit Testing Framework.

5.6 Deployment

The framework and both group signature schemes ship together as a JAR (JAva
ARchive) �le. Usual directions about using a .jar �le apply here. We tested the
package with a Java Runtime Environment (JRE) version 6 Update 19.

5.7 Tools

The use of Java as programming language, as dictated by the requirements,
led to the choice of using Eclipse as integrated development environment. For
testing, we used the JUnit testing framework as a fully integrated solution in
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Figure 5.7: Group signature framework implementation benchmarks

Eclipse. As compiler and interpreter of the Java language the obvious choice is
the Sun's Java Development Kit. We summarize the tools in the table 5.5.

Tool Description Version

Eclipse IDE 3.5.1
JUnit Testing Framework 4.5.0
JDK Sun's Java Development Kit 6 Update 19
Subversion Advanced control version system 1.6.6
TortoiseSVN Windows client for Subversion 1.6.6

Table 5.5: Development tools

5.8 Benchmarks

We report in graph 5.7 a brief benchmark of our implementation to give an idea
of the time required to the �nal user for common group signature operations.
The values are an average of 5 test runs, excluding the �rst just after the JVM
is started. As security parameters we use a 1024 bits comparable security. All
values are expressed in milliseconds.

For our tests we used two systems:

(A) notebook equipped with single-core Intel Pentium M760 processor at 2.0
GHz with 2 Mb of L2 cache and 2 Gb of DDR PC-2700 ram;

(B) notebook equipped with quad-core Intel Core i7 720QM processor at 1.60
GHz with 6 Mb of L3 cache and 4 Gb of DDR3-1333 ram.
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5.9 Conclusions

For the sake of brevity and because we would like to focus more on the network
security aspects, we only outlined the development process. We left out of the
chapter the use case description, the package diagrams, the sequence diagrams
and the list of test cases. In addition we omitted the design of our own math
library, included in the project.

In any case, we described in this chapter the phases of our software devel-
opment process. In addition, even if we tagged our framework as experimental,
we smoothly implemented both ACJT and CG in it. The next step will be the
integration in the PERIMETER (see chapter 7) project: an activity already
planned in the near future.

The source code of our library can be found on the CD-ROM support in-
cluded in our work.



Chapter 6

Performance Analysis and

Evaluation

In this chapter we will analyze the scalability constraints of the presented group
signature schemes. We will split this analysis in two parts. In the �rst we
consider the burden imposed on a single peer, then we will take into account
the bandwidth occupation on the whole network. Together with ACJT, we
choose the full revocation version of CG, as the object of our analisys.

6.1 Single Peer Model

In this section we de�ne a simple model to analyze performances of the group
signature main operations. In this part we analyze the resources of a single
node: time and space occupation. We are marginally interested in the time
complexity of the operations, mostly to check if they are independent of the
number of users. We are much more interested in the space occupation of their
products, because this will form the basis for our system-wide analysis.

6.1.1 Time Complexity

6.1.1.1 SETUP and JOIN

For security reasons we believe the GM should be always kept o�ine in a net-
work: it takes care of the GSK and the list of member identities: both of them
should be kept secret.

The SETUP algorithm is run by the GM alone, only at the creation of the
group. Here the main parameters involved are the security parameters of the
group, as described by the group signature scheme itself. Both schemes o�er
di�erent security parameters. The only common point is the size of the RSA
modulus used: the other parameters are bounded by linear relations to the size
of the modulus. Thus the computation time required by the SETUP algorithm is
only in�uenced by the size in bit of the RSA modulus, in an exponential way.

The JOIN algorithm is a n-round protocol between the GM and a would-
be-member. In our opinion, this exchange should be executed on a secure and
private channel and entirely o�ine: the model we propose is similar to the

42
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subscription of a new mobile contract. In this case the user goes physically to an
authorized vendor, signs a contract and gets some kind of proof of membership
in return. We are aware that there are many problems connected to this choice
that even breaks the security of the schemes, but we think it to be safer and
not less problematic than the online scenario. Even in this case, however, the
computation time is only bound to the size of the RSA modulus, without any
constraint on the number of members.

For the presented reasons both SETUP and JOIN, from now on will be con-
sidered o�ine operations.

6.1.1.2 SIGN

Both ACJT and CG schemes feature a SIGN procedure where the computational
e�ort required to sign is independent with respect to the number of members of
the group, that is of constant time, O(1).

6.1.1.3 VERIFY

Both ACJT and CG schemes feature a VERIFY procedure where the computa-
tional e�ort required to verify is independent with respect to the number of
members of the group, that is of constant time, O(1).

6.1.1.4 OPEN

Both ACJT and CG schemes feature a OPEN procedure where the computational
e�ort required is independent with respect to the number of members of the
group, that is of constant time, O(1).

6.1.1.5 REVOKE

Only CG scheme provides revocation capability. In this operation the GM must
update the GPK so that a revoked member may no longer prove membership in
a signature. The change involved in one revocation is of constant size in terms of
number of members in the group. The members of the group must then update
their MSK too, with a change of constant size. The latter operation can be
delayed till signing is required, but in that case it is linear in the number of
revoked members since last update of theMSK.

6.1.1.6 FULL REVOKE

Only CG scheme provides full revocation capability. In this operation the GM
publishes a token of a revoked member (in a member revocation list) so that
any other user may check if a signature has been produced by that member.
Both operations are of constant size with respect to every parameter.

6.1.2 Space Occupation

6.1.2.1 SETUP and JOIN

Both phases are meant to be run o�ine. In any case, as for the time complexity,
the size of the keys and certi�cates produced is related only to the size of the
RSA modulus, once again in an exponential way.
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6.1.2.2 SIGN

Both ACJT and CG schemes feature a SIGN procedure where the size of the
signature attached to a message is independent of the message size and of the
number of members of the group, that is of constant size, O(1). The size of the
signature, thus the security of it, depends linearly on the bit-size of the RSA
modulus used.

6.1.2.3 VERIFY

In both scheme, the VERIFY procedure is of constant size with respect to the
number of members of the group.

6.1.2.4 OPEN

In both scheme, the OPEN procedure is of constant size with respect to the
number of members of the group.

6.1.2.5 REVOKE

Only CG scheme provides revocation capability. During this operation the GM
publishes one number half the size of the RSA modulus maximum; in addition,
every member still in good standing must look up this number from the member
revocation list and update his ownMSK.

6.1.2.6 FULL REVOKE

Same as REVOKE operation, but without the update of theMSK.

6.2 Distributed System Model

We analyze now both schemes at a broader, system level taking into account
the single peer examination of the previous section. At this level, the only
scarce resource is bandwidth. We de�ne the bandwith B as the total amount
of tra�c moved on the network in a time unit. Our de�nition of time unit is
not strict but we imagine it as small as one second. We will evaluate how much
bandwidth is needed by the schemes in terms of number of messages signed,
of veri�ers and total users, in a multiple-veri�ers environment. Our attention
focuses on the set of online members in the group, that is the set of users that
are signing or verifying in a time unit. In both examinations we skip the SETUP
and JOIN operations because, being executed o�ine, they have no in�uence over
bandwidth. Later we will cull even the OPEN procedure from the analysis. The
other operations, as we have ria�rmed in previous section, are independent (or
linear) of the total number of users in the group, but are exponential in the size
of RSA modulus chosen. We see the burden that every operation has on total
bandwidth utilization.

6.2.1 ACJT Model

We report here the variables needed to model the ACJT scheme bandwidth
utlization:
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Ln
RSA modulus size

Lm
average message length

Ls
average signature length (depends on Ln)

LGPK
average GPK length (depends on Ln)

ns
average number of signed messages produced by every user in the time
unit

nv
average number of veri�ers for every signed message in the time unit

pa
percent of active users in a given moment

po
percent of opened signatures in the time unit

N
number of users in the group at the beginning of the time unit

α
average number of users joining the group in the time unit

Na
number of online/active users in the group at the end of the time unit,
where Na = (N + α) ∗ pa

Nm
total number of messages circulating on the network in a time unit, where
Nm = Na ∗ ns ∗ nv

6.2.1.1 SIGN

This factor includes the total bandwidth consumed by signed messages spread
over the network. It is linear on the total number of messages in the network.

Σ = Nm ∗ (Lm + Ls)

6.2.1.2 VERIFY

To verify the validity of an alleged signature a user needs the GPK. This
procedure can greatly bene�t from a caching mechanism, assuming that the
veri�er population does not vary too much over time, because the GPK never
changes. In a real world scenario this term could be nearly of costant size. As
always, in case of indecision we choose a conservative approach: in this model
we do not consider the impact of such an optimization.

Φ = LGPK ∗Nm
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6.2.1.3 OPEN

The cost is:
O = LGPK ∗ po ∗Nm ∗ ns

As we expect that the number of malicious signed messages in the network will
always be a �xed percentage of the total number of messages, we decide to
express po as a percentage of Nm. This cost is valid only in abstract, because
the bandwidth incurs in no additional costs if the membership manager and the
revocation manager are the same, as the default setting for the scheme.

6.2.1.4 ACJT Bandwidth Utilization

Bandwidth needed:
B = Σ + Φ +O

6.2.2 CG Model

The CG scheme features the same operations of the ACJT scheme and extends
it with revocation. It adds a new set of parameters and shares the ones already
described. We report here only the new or modi�ed ones.

Lr
average revocation token length (depends on Ln)

ρ
average number of revoked users in the time unit

Na
number of online/active users in the group at the end of the time unit,
where Na = (N + α− ρ) ∗ pa

6.2.2.1 SIGN

Σ = Nm ∗ (Lm + Ls)

6.2.2.2 VERIFY

As we have discussed in the previous section caching could be a great bonus for
the VERIFY operation in ACJT. In the CG scheme instead the bene�t is nearly
nulli�ed due the periodical modi�cation of the GPK caused by revocations. In
this case, in fact, every user (member or non-member) who wants to verify a
signature must always check if the GPK has changed in the meantime.

Φ = LGPK ∗Nm

6.2.2.3 OPEN

The cost is:
O = LGPK ∗ po ∗Nm ∗ ns

As we expect that the number of malicious signatures in the group will always
be a �xed percentage of the total number of messages, we decide to express po as
a percentage of Nm. This cost is valid only in abstract, because the bandwidth
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incurs in no additional costs if the membership manager and the revocation
manager are the same, as the default setting for the scheme.

6.2.2.4 REVOKE

In a time unit, every active member of the group must download from aMRL
a token of size Lr for every revoked member to update his witness. This update
can be delayed till a signing is required but, obviously, in that case, will be
linear in the number of revoked members since last update.

K = Na ∗ Lr ∗ ρ

6.2.2.5 FULL REVOKE

Same as REVOKE.
K = Na ∗ Lr ∗ ρ

6.2.2.6 CG Bandwidth Utilization

Bandwidth needed:
B = Σ + Φ +O +K

6.3 Evaluation

The goal of this section will be to evaluate the model performance under various
conditions: we will try to collapse the system to eventually �nd constraints that
can limit its scalability.

Before evaluating our model, we still need to de�ne values for the security
parameters of the two di�erent signature schemes and add some others for the
consistency of the environment: one set of parameters related to the properties
of a communication protocol and another one to the user population.

We choose a moderate security level based on a 1024 bits RSA modulus and
set the security parameters of both schemes to a comparable level of security1.
We derive the average lengths of signatures, Ls, and GPK, LGPK , from the
analysis of the schemes (see tables 6.1 and 6.2).

After that we indicate the values used for the security parameters of both
schemes in tables 6.3 and 6.4.

In relation to the communication protocol, we still have to pinpoint the
parameters regarding message size and the ratio between sign, verify, open and
revoke actions. For this reason we de�ne a believable model protocol where a
member should produce and sign ns messages of length Lm bits in a time unit,
each of them veri�ed by nv di�erent parties. Our approach is fairly conservative
since we consider every active user in the network to actively sign and verify
messages every time unit. Finally we �x a constant percentage, po, of malicious
messages.

1We should point out that the modulus in ACJT should be greater than CG's. In fact
in ACJT, the GM knows the value axiao mod n by a member, with xi being the member's
secret. But since he knows the factorization of n, he has an advantage computing discrete
logarithms modulo n. Hence, to protect xi ACJT's modulus should be greater than CG's.
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ACJT

Parameter Length

n, a, a0, y, g, h 12lp

GPK(LGPK) 12lp

c k
T1, T2, T3 6lp
s1 ε(γ2 + k) + 1
s2 ε(λ2 + k) + 1
s3 ε(λ1 + 2lp + k + 1) + 1
s4 ε(2lp + k) + 1

Signature(Ls) 6lp + k + ε(4lp + 4k + λ1 + λ2 + γ2 + 1) + 4

Table 6.1: Analytical analysis of the lengths of signatures and
GPK of ACJT scheme

As our aim is to test the scalability and feasibility of the proposed schemes
in a largely distributed system with respect to the features of a model protocol
and to the user population, we will test our model in six di�erent scenarios
varying

A the security level to analyze the overhead introduced by signatures;

B the number of signed messages produced in a time unit;

C the number of veri�ers for every signed message;

D the number of total members partecipating in the group;

E the number of non-members added to the group;

F the number of members leaving the group because of revocation.

At this time we can cull even the OPEN cost on bandwidth because in our im-
plementation the group manager and the revocation manager coincide.

6.3.1 Scenario A: Signature overhead

We de�ne the overhead introduced by a group signature in a message as the
percentage

ω =
Ls

Lm + Ls
· 100

We show in the �gure 6.1 the overhead introduced in a signed message as the
size of message changes, with four di�erent levels of security. The length of the
signatures is calculated using tables 6.1 and 6.2.

6.3.2 Scenario B: Number of signed messages

In this test we vary the number of signed messages produced by each active user
in a time unit. We see in table 6.5 the values and the interval ranges adopted
in the test.
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CGa

Parameter Length

n, a, g, h, w, f 6ln
Q lQ
P, F,G,H 4lP

GPK(LGPK) 6ln + 4lP + lQ

c lc
u ln
U1, U2, U3, U4 4lP
zs lQ + lc + ls
zx lQ + lc + ls
zr ln + lc
ze le + lc + ls
ZR lQ

Signature(Ls) 2ln + 4lP + 3lQ + 5lc + 3ls + le

a Full revocation version

Table 6.2: Analytical analysis of the lengths of sig-
natures and GPK of CG scheme

6.3.3 Scenario C: Number of veri�ers for every signed
message

In this test we vary the number of veri�ers for every signed message produced
by each active user in a time unit. We see in table 6.6 the values and the interval
ranges adopted in the test.

Understandably the results of mirroring the number of signed messages and
of veri�ers produce the same results because in both cases the total number of
messages in the network remains the same. We report in �gures 6.2 and 6.3 the
results of applying to the model the proposed values.

6.3.4 Scenario D: Number of total members

In this test we vary the total number of members of the group. This choice has
in�uence over the number of active users and in cascade over the total number
of messages in the network. We could achieve the same result modifying the
percentage of active population of a group, pa. We see in table 6.7 the values and
interval ranges adopted in the test with a chancing number of total members.

We report in �gures 6.4 and 6.5 the results of applying to the model the
proposed values.

6.3.5 Scenario E: Number of non-members joining to the
group

In this test we measure the e�ect on bandwidth of adding a set of new member
to the group. We see in table 6.8 the values and interval ranges adopted in the



CHAPTER 6. PERFORMANCE ANALYSIS AND EVALUATION 50

0 2 4 6 8 10 12 14

x 10
4

0

20

40

60

80

100

Message Size (bits)

O
ve

rh
ea

d 
(%

)

ACJT Overhead

 

 
ACJT(512)
ACJT(1024)
ACJT(2048)
ACJT(4096)

0 2 4 6 8 10 12 14

x 10
4

0

20

40

60

80

100

Message Size (bits)

O
ve

rh
ea

d 
(%

)

CG Overhead

 

 
CG(512)
CG(1024)
CG(2048)
CG(4096)

Figure 6.1: Scenario A: Overhead introduced by signatures as the size of message
varies
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ACJT

Parameter Value

lp 512
ε 1.1
λ1 838
λ2 600
γ1 1102
γ2 800
k 160
H SHA-1

GPK(LGPK) 6144
Signature(Ls) 8655

Table 6.3: ACJT secu-
rity parameters adopted
for model evaluation

test with a variable number of new members joining the group.
We report in �gures 6.6 and 6.7 the results of applying to the model the

proposed values.

6.3.6 Scenario F: Number of members leaving the group

We see in table 6.9 the values and interval ranges adopted in the last test with
a variable number of members being revoked. This test is obviously run only
for CG scheme.

We report in �gures 6.8, 6.9 and 6.10 the results of applying to the model
the proposed values. In the last �gure we can note the linear dependence of the
bandwith with respect to the number of revoked member since last update.

6.4 Conlusions

As we can see the schemes behave quite similarly for standard signing or ver-
ifying: both exhibit an asymptotical linear progression in terms of bandwidth
utilization.

Bearing in mind this outcome, the choice of one scheme over the other is
quite di�cult. In fact, as we can see in 6.1, until the security requirements
are low, ACJT introduces a lower overhead than CG. Roughly speaking, if the
group signature modulus is equal or less than 1024 bits ACJT performs better
than CG, especially if the veri�er/signer ratio is high. If the modulus is 2048
bits ACJT could still be preferred if a proper caching mechanism is in place
and if the group of veri�ers is quite stable. Above this threshold the results are
uncertain: CG features a smaller size of signatures but ACJT could still be equal
or better thanks to caching, if the number of veri�ers for signed message is high
and the group of veri�ers does not change much. From a network utilization
point of view ACJT is probably the winner of the contest.
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Figure 6.5: Scenario D: Bandwidth cost as the total member number changes
(details of every operation)
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Figure 6.7: Scenario E: Bandwidth cost as the joined member number changes
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CHAPTER 6. PERFORMANCE ANALYSIS AND EVALUATION 55

10
5

10
1

10
2

10
3

10
4

10
5

10
6

# of active users

B
an

dw
id

th
 (

M
b/

s)

Bandwidth Consumption

 

 
CG (Sign)
CG (Verify)
CG (Revoke)

Figure 6.9: Scenario F: Bandwidth cost as the revoked member number changes
(details of every operation)
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CGa

Parameter Value

ln 1024
lP 1024
lQ 230
lE 450
le 30
ls 30
lc 160
H SHA-1

GPK(LGPK) 10470
Signature(Ls) 7754
a Full revocation version

Table 6.4: CG security
parameters adopted for
model evaluation

On the contrary, in terms of computation time, we have shown in the previ-
ous chapter that CG is always leading. From the results of our benchmarks we
can infer that CG has a speedup of 3− 5x with respect to ACJT performances
for usual operations. The original paper claims an order of magnitude of im-
provement, thus we think it could be possible to optimize our mathematical
library for better speed.

On the feature side ACJT is not so �practical�: its usage is restricted to the
(unlikely) case of monotonically growing or very short-lived groups. Revocation
is probably not only a very sought after feature, but a �must� for real-world
usage of these constructs. CG supports it but at great costs as soon as the
number of revoked members in a time unit is comparable to the number of
active members. We've shown that revocation taxes the bandwidth utilization
with massive costs, even for a small enough percentage, for instance 1% of total
group members revoked in a time unit. We can however argue that if we keep
the rate of revoked members in a time unit, small to a reasonable and likely
amount, say around 1% of active users, the system still performs well for many
applications.

As a conclusion, ACJT scheme is quite general purpose but can su�er if
the security requirements are high, it is less e�cient in terms of computation
time and above all does not o�er revocation: for real world application these
facts sound like a no go for nearly every situation. CG scheme, on the other
hand, may not be practical if the number of veri�ers in a protocol is high, but
otherwise is the natural scheme of choice until the number of revoked members
in a time unit is small enough. If a group features a very dynamic nature we
can not propose a solution.
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Symbol Description Value

Lm Message length 8000a

ns Messages signed in a time unit [1 : 9]

nv
Veri�ers for each signed message
in a time unit

3

po Percentage of opened messages 0.1%

N Group population 1000000

pa
Online/active group population
percentage

10%

α
Members added to the group
population

0

ρ
Members revoked from the group
population

0b

Na Online/active group population 100000
a value in bits
b CG only

Table 6.5: Scenario B: Parameters for the test varying
the number of signed messages

Symbol Description Value

Lm Message length 8000a

ns Messages signed in a time unit 3

nv
Veri�ers for each signed message
in a time unit

[1 : 9]

po Percentage of opened messages 0.1%

N Group population 1000000

pa
Online/active group population
percentage

10%

α
Members added to the group
population

0

ρ
Members revoked from the group
population

0b

Na Online/active group population 100000
a value in bits
b CG only

Table 6.6: Scenario C: Parameters for the test varying
the number of veri�ers for every signed message
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Symbol Description Value

N Group population [100 : 5000000]

pa
Online/active group population
percentage

10%

α
Members added to the group
population

0

ρ
Members revoked from the group
population

0a

Na Online/active group population [10 : 500000]
a CG only

Table 6.7: Scenario D: Parameters for the test varying the total
member number

Symbol Description Value

N Group population 1000000

pa
Online/active group population
percentage

10%

α
Members added to the group
population

[0 : 100000]

ρ
Members revoked from the group
population

0a

Na Online/active group population [100000 : 110000]
a CG only

Table 6.8: Scenario E: Parameters for the test varying the added
member number

Symbol Description Value

N Group population 1000000

pa
Online/active group population
percentage

15%

α
Members added to the group
population

0

ρ
Members revoked from the group
population

[0 : 10000]

Na Online/active group population [150000 : 148500]

Table 6.9: Scenario F: Parameters for the test varying the revoked
member number



Chapter 7

Case Study: PERIMETER

In this chapter we will study the feasibility of adding group signature support
to a distributed system on a 3G mobile network where a large number of users
shares quality of experience feedbacks about the quality of mobile and wireless
services present in an area. In our case, Quality of Experience (QoE) is a
subjective measurement of the quality of a service. Every user taking part in
the system has the possibility from time to time to rate subjectively the quality
of a service used and to distribute it to other users upon request, together
with the location where the measurement was taken. Users are then able to
choose the best service based on their preferences and the requirements of the
applications they are using.

7.1 PERIMETER

PERIMETER is the acronym of an ICT project funded by the European Union's
seventh framework research program (FP7). Its full title is �User-Centric paradigm
for Seamless Mobility in Future Internet�. PERIMETER's main objective is to
establish the new paradigm of user-centric strategies for advanced networking.

Nowadays mobility is already ubiquitous and more and more useful in every-
day life, but it still plagued by many drawbacks: costs are never clear enough,
security is often a negletted property, networks are operator-centric in the sense
that subscribers are normally tied to their speci�c mobile operator network, even
if conditions or load of that network are worse than other networks present in
the vicinity. Ideally the user should not be tied to a particular network and, on
the contrary, should be the in charge of choosing the best solution with respect
to his preferences, like maximum cost or desidered security. PERIMETER tries
to �ll this gap establishing a new user-centric paradigm for advanced network-

Figure 7.1: PERIMETER Logo
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ing: mobile users are �Always Best Connected� (ABC), where �best� is de�ned
by the user's preferences.

This objective is achieved by selecting the best network based on Quality
of Experience (QoE), user preferences and high-level rules instead of individual
technologies. In fact, every user rates his experience with a network service (3G
network, WLAN, WiFi, ecc) in terms of QoE, that is a subjective measurement
of the quality of available communication services as perceived by the user. This
approach is richer than one purely based on technical measurements, since it
encompasses a larger scope of cases and really gives the end user a service which
is the �best� for him.

Every user in an area, then, periodically shares these QoE information to
better inform users that are close by, about the services present in the area and
their quality. At the same time every user collects other users' measurements
to better choose, if possible, the best network for his preferences.

Aside from network selection, PERIMETER is much more: to achieve this
seamless mobility among networks, it is very important to change the way the
user interacts with network providers in such a heterogeneous system. More
dynamic ways of fast authentication, authorization, accounting (AAA) will be
proposed to move forward from the actual operatic-centric model of representing
users.

Privacy and Trust Last but not least come the concerns about privacy,
security, trust and traceability. In an environment so dynamic and open where
everyone should share his reports about his vicinity, it is vital to protect the
location and the identity of a user. On the other side, it is not less important
to the project to provide trust and reputation, so that the QoE information
exchanged are really useful and truthful. At last, it must even be possible to
trace malicious users so that abuses can be punished.

It is clear that the aforementioned requirements clash together. However as
we have already seen in the previous chapters of this work, there are crypto-
graphic primitives that grant anonimity, traceability and group trust. In fact,
to solve this issue, PERIMETER will employ a group anonymous authentica-
tion infrastructure based on group signature schemes fully integrated with an
anonymization infrastructure to strip, from the QoE data exchanged, any trail
that could lead to a user identity.

7.1.1 XPeer

The PERIMETER architecture speci�es the use of the XPeer framework. XPeer
[SMGC04, XPe10] is a P2P XML database system which manages and gives
access to data distributed over an arbitrary set of Peers. The Peers are au-
tonomous in the sense that they are free to share data of their choice and to
connect or disconnect at any time.

The main advantages of XPeer are:

Zero-Administration a collection of algorithms self-organizes the SuperPeer
network and allows arbitrary changes in the network topology;

Open-Schema a peer may export any kind of data provided that data are
encoded in XML format and described by a schema;
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Querable a basic property of a database is of course the possibility to satify
query requests. XPeer adopts a subset of XQuery language.

We note that due to the the everchanging topology of the system, XPeer o�ers
no guarantee about the completeness of query results.

Topology XPeer is a hybrid p2p system composed by a dynamic set of au-
tonomous peers which shares data and executes queries. Some nodes (usually
with adeguate computational power and resources) may perform administrative
tasks for the network: they are called SuperPeers. Normal Peers may become
SuperPeers on a voluntary basis, while retaining their Peer role.

The system is nor a pure P2P system nor only a hierarchical one. SuperPeers
are organized to form a tree, where each node manages and hosts information
about its children. Peers are logically organized into clusters of nodes, where
each cluster contains at least one SuperPeer in charge of managing the cluster
itself. SuperPeers having the same father form a group.

Since the topology of the network evolves over time, SuperPeers may change
their tree structure: they may split or merge clusters and groups or promote
Peers to SuperPeer status. In particular, if the workload for a given SuperPeer
is too high, it �rst tries to relocate some Peers in other clusters (network bal-
ancing), then, if the problem persist, it asks the system for new SuperPeers to
delegate to them part of its workload (network extension). If the workload is
still too heavy, as a last resort, it may disconnect some Peers from the network
(peer de-gnoming). On the other hand, if the workload is too light, the Super-
Peer may decide to import Peers from other clusters or to move its children to
another SuperPeer and then to abandon the SuperPeer status (network contrac-
tion). These algorithms together achieve the zero-administration property.

Data model XPeer poses no constraints to the type of data that can be
shared as long as they are encoded in XML format and described by a schema.
No global schema is enforced, so data is represented as an unordered forest of
trees. Each tree is then augmented with the label of the hosting peer (location).
Data are exported in the form of a tree-guide, that is a tree-like description
of the XML document, and then searched with a tree search algorithm. The
middle nodes of the tree follow the structure of the document itself, while the
leaves may even contain value ranges of the data being shared.

We have already seen that Peers are clustered together: when it is possible,
clusters are formed on a schema-similarity basis, that is Peers exporting data
with similar schemas. SuperPeers store two kinds of schema information about
their children: the list of all schemas (the schema list) and the union of these
schemas (the superpeer schema). The list is used to answer to queries, while the
second is passed upwards in the tree so that the schema description of a cluster
is published at the top of the tree (tree guide propagation).

The process of querying the system is split in two phases: compilation and
execution. During the former a Peer writes a query using XQuery language and
sends it to the SuperPeer of its cluster. The compilation is made by traversing
the tree hierarchically, till the root of the tree is reached, with a tree-search
algorithm until one or more locations for the data being asked are found or none
at all is found. If the search is successful, the Peer gets a list of all the locations
that store data relevant for the search. In the second phase, the execution, the
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Peer asks directly every Peer in the result list for data. This dual-part approach
allows the queries to be compiled, optimized, and run only over a set of relevant
peers, thereby avoiding broadcast.

A cluster is not only useful for smoothing the search process. In fact inside
a cluster, the system may decide to replicate, partially or totally, the data being
shared to balance the workload or to add redundancy. Like the superpeer status,
replication too happens on a voluntary basis.

7.2 Model of a Distributed QoE Storage System

on a 3G Mobile Network

7.2.1 Description

In this section we describe a simple but meaningful scenario of a distributed stor-
age system working in a 3G mobile network using PERIMETER and XPeer. We
then model and analyze the scenario and then make a comparison between the
resource requirement of the system with and without the use of group signa-
tures. Our e�ort is not directed on how to modify existing protocols for the
use of group signatures but only to give a rough estimate of the bandwidth
requirement of this scenario, so that it is possible to show its feasibility.

We suppose a 3G mobile network where the users are uniformely distributed
in a circle of diameter D. This event is highly unlikely to happen in real-
ity but our aim is to model 3G cells that manage an equal number of users
each. While in this circle, users are randomly moving of uniform motion. Each
user partecipating in the network exchanges Quality of Experience (QoE) data.
Furthermore, each user is interested in QoE data relevant only for his actual
location, both past and present, produced by other users in the same geographic
area. With this information, the user is then able to decide which connection is
best suited for the application he is running and the preferences set, e.g. price
or reliability. We de�ne this area of relevance as a circle of radius d and the
user's location as the centre of this smaller circle.

We recognize that both our network and mobility models are simpli�ed, but
we think that on the global scale it will be indi�erent which model we will
employ. Further studies on this issue will be probably be carried on in the
future.

In our case study every user owns a terminal with networking capabilities,
which is a node running a Peer instance of XPeer. Every time a user powers
up a terminal, he connects to a SuperPeer and gets access to the distributed
storage system. Similarly he disconnects when he powers down the terminal.
Every time a user experiences a network service he is asked to give a feedback
of the quality, thus producing a QoE measurement. In addition, periodically a
user polls the storage system to obtain relevant QoE measurements.

We imagine for our analysis a very simple XPeer scenario, where one Super-
Peer acts as Root of the system and of the tree hierarchy. All other SuperPeers
are in the same group (that is, their father is Root) and all Peers are clustered
around them. In accordance with our model, both Peers and SuperPeers are
uniformely distributed in the network. Root physical location in the network is
indi�erent. XPeer voluntary services for becoming a SuperPeer or for generat-
ing replicas are all disabled by default. XPeer topology for our scenario can be
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Figure 7.2: 3G QoE Network model adopted

Figure 7.3: XPeer scenario topology

found in �gure 7.3.
We will now present the bare model and improve it with the addition of a

group signature scheme, then we will evaluate it using data coming from the 3G
network world [TSSP08].

7.2.2 De�nitions

In table 7.1, we brie�y report de�nitions, useful for the understanding of the
following model.

7.2.3 Model

In this section we will try to estimate the average number of exchanged messages
for typical actions that a XPeer node performs. We list them in table 7.2, giving
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Token Description

P Peer
SP SuperPeer
R Root
K # of SP whose father is R
D Network diameter
d(≤ D) Network portion diameter
N Total number of users
M1 XPeer signalling message (<1k)
M2 XPeer small meta-data message (<10k)
M3 XPeer big meta-data message (>10k)
T Seconds between two sebsequent writes
n = N · (d/D)2 Number of users in a geographic area

Table 7.1: XPeer on a 3G network model de�nitions

special attention to what they represent in our case study. For our estimate we
suppose that the number of peers in a limited area is always much bigger that
the number of available SPs.

XPeer action In our Scenario # of messages

P connection to a SP User powers up the terminal 4 ·M1

P disconnection from the
network

User powers down the termi-
nal

4 ·M1

P publishing of data in the
storagea

User gives a QoE report 2 ·M1 + 2 ·M3

P query compilation
User asks for QoE data

2 · (K + 1) ·M1
b

P query execution n ·M1 + n ·M2

a Tree guide propagation.
b Under the hypothesis that n >> K.

Table 7.2: Average number of messages exchanged during typical XPeer actions

Instead, in table 7.3 we value the number of actions performed in every
limited area every second, using the statistical data taken from [TSSP08]. As
we have already noted the users are uniformely distributed in the network circle,
thus for the number of logins and logouts we divide the network operator's
average found in [TSSP08] by the ratio between the limited area and the total
network area. The number of writes is just related to the frequency with which
users publish QoE reports to the network. Regarding the number of reads, as
we are supposing that users move of randomly uniform motion (30Km/h in the
original paper), their permanence in an area will be very time-limited and every
user changing area polls the system for QoE data of the new area. This leads
to the result that the number of reads is related to the speed with which users
move in the network.
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Action Valuea

# of logins/logouts 694 · (d/D)2

# of writes 1
T · n

# of readsb 8, 3 · n
a for every second in a cell.
b in state of uniform motion 30Km/h = 8, 3m/s.

Table 7.3: 3G network statistics

7.3 Evaluation

In this section we will evaluate the models de�ned for the group signature
schemes already seen together with this particular scenario. We give values
to the parameters already seen and add the ones missing in table 7.4 and then
we will graph the results, applying the values to the models. For group signa-
tures we suppose that every mobile user belongs to the same group signature
group, because we are interested in the study of the performance of our sys-
tem in the whole network of a 3G operator. For security parameters we reuse
the ones already precalculated with 1024 bits equivalent security. We refer the
reader to the previous chapter for details on the modeling of group signature
lenghts.

To complete our model we still need the values reagarding the �uctuation of
the population of mobile network operators. Such data is however considered
a trade secret and it is not of public domain. For this reason it is up to us to
make hypotesis about reasonable values. We suppose that on the long run the
population will mantain its level, so the rate new customers sign contracts or
leave the operator are the same. We call this rate, recycle rate. We make three
hypotesis about this rate in table 7.5: small, medium and high.

The results of the evaluation of our model are resumed in table 7.6. We
report just one column, since the results are equal till the second decimal digit.

7.4 Analysis

The evaluation of the model exhibits the very pratical nature of protecting
PERIMETER with group signatures. We showed that even CG's revocation is
achieved quite easily with little overhead more than the case with ACJT. We
underline the very conservative nature of our approach: forcing users to rate
QoE every minute is a really in�ated estimate.

We know from our previous analysis that the key parameter for the feasi-
bility of the system is the revocation rate. We get here an indirect veri�cation
about the validity of the conclusions of the previous chapter: we concluded that
with CG the system collapses as soon as the number of revoked members in
a time unit is comparable to the number of active members and. This fact is,
however, far from reality in our scenario. Tentatively, we found out that the ovs-
cusaerhead of the system goes over 50% when the revocation rate is around 7000
users/s, but this would mean an annual recycle rate of around 74000%. This
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Symbol Description Value

M1 Message length 1Kb
M2 Message length 10Kb
M3 Message length 20Kb

K
Number of SPs whose father is
Root

100

T
Seconds between two subsequent
writes

60

tnotea
D Network area diameter 1000Km
d Limited network area diameter 1Km
Lm Average message length 235Kbb

ns Messages signed in a time unit 0, 05

nv
Veri�ers for each signed message
in a time unit

498

po Percentage of opened messages 1%

N Group population 30000000

pa
Online/active group population
percentage

10%

Na Online/active group population 3000000

n
Online/active members in the
limited area

3

a That is one write every minute. This is very unlikely
value, but we want our analysis to be strictly conser-
vative.

b This average is the average weighted of the length of
the messages on the number of actions.

Table 7.4: Values assigned to parameters for model eval-
uation

rate is obviously disproportionated with respect to the bounds and requirements
imposed by the scenario.

The system presents no other visible limits since all relations in the model
are linear.
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Recycle Rates

Symbol Description Small (5%) Medium (20%) High (50%)

α Members added 0, 05a 0, 20 0, 50
ρb Members revoked 0, 05a 0, 20 0, 50

a with N = 3000000, x%/year ' 0, x/s.
b CG only.

Table 7.5: Suggested values for the mobile operator recycle rate

Security Bandwidtha Overhead

No Security 0, 73

ACJT GS 0, 78 5, 91%

CG GS 0, 79 7, 18%
a in Mb/s.

Table 7.6: Results of the evaluation of
our model for the limited area with and
without the protection of group signa-
tures



Chapter 8

Conclusions and Future Work

During this work we reached two main original results.
The �rst and probably more important achievement was to model, analyze

and evaluate PERIMETER's storage system, a distributed storage system run-
ning on 3G mobile network nodes, with and without the protection of group
signatures. We theoretically demonstrate that, with the requirements imposed
by our scenario, the overhead imposed by group signatures is acceptable and in
addition that a tradeo� among security, privacy and scalability is not necessary;
in fact, we accomplished all three together. In particular, we obtained privacy
intended as the anonymization of tra�c source identities and security as a basic
user trust mechanism, through the use of group identi�cation. We even proved
scalability using the system in a highly populated peer-to-peer environment and
traceability as a way to retrieve a malicious user identity. Moreover, we drew
the limits of a similar system in a general case, with a wider scope.

At the same time, we showed the feasibility of designing and implementing a
cryptographic framework for group signatures. Such framework exhibits many
useful properties: application and implementation independence together with
algorithm extensibility. Furthermore, we integrated it in Sun's existing crypo-
tographic architecture showing that is possible to bind together modern and
bleeding-edge cryptography concepts. In addition, we merged into the frame-
work the implementation of the two group signature schemes reviewed during
our work.

In the near future, we have already planned to go further one step in the
natural direction. After the implementation of the framework and the scenario
analysis, we will integrate the �rst with the running system to improve privacy
and security of PERIMETER. Finally, at the same time, we should develop and
analyze di�erent and more thorough models for network topology and mobility
to cover a broader range of situations that could happen in reality.
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Appendix A

Glossary

We report here the common acronyms used throughout this work.

ACJT Group Signature Scheme from Ateniese, Camenisch, Joye and Tsudik
[ACJT00]

API Application Programming Interface

CG Group Signature Scheme from Camenisch and Groth [CG04]

DHP Di�e-Hellman Problem

DDH Decisional Di�e-Hellman

DLP Discrete Logarithm Problem

FACTORING Integer Factorization Problem

GM Group Manager

GPK Group Public Key

GS Group Signature

GSK Group Manager Secret Key

GM Group Manager

JCA Java Cryptography Architecture

JVM Java Virtual Machine

MRL Member Revocation List

MSK Member Secret Key

P2P Peer-to-Peer Network

QoE Quality of Experience

SP XPeer SuperPeer

SPI Service Provider Interface

SRSA Strong RSA

VLR Veri�er-Local Revocation
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Appendix B

Number Theoretic Problems

Cryptography provides many di�erent low-level algorithms called cryptographic
primitives (i.e. encryption and description schemes or hash functions). Each
of them o�ers precise services (i.e. authenticity or con�dentiality) guaranteeing
security under di�erent assumptions. These primitives can be combined to work
together to form cryptosystems.

The security of these systems, such as group signature schemes, relies on
the intractability of solving some number theoretic problems. That means that
no algorithm is known to solve those problems using a reasonable amount of
resources (time and/or memory), because it is proved or assumed that no such
algorithm exists. In the following we present those problems and assumptions
useful to understand the group signature schemes later discussed.

B.1 Factorization of Large Integers

E�cient factorization of large integers is probably the most famous and stud-
ied number theoretic problem. Many modern cryptosystems are based on its
intractability.

De�nition B.1. (Integer Factorization Problem) The integer factorization prob-
lem (FACTORING) is the following: given a positive integer n, �nd its prime
factorization, so that n = pe11 p

e2
2 · · · p

ek
k , with pi pairwise distinct primes and

ei ≥ 1.

As of today the best published running time of an algorithm, the General
Number Field Sieve, solves this problem in O(eb), where b is bit length of the
number to factor. No polynomial time algorithm that solves FACTORING is
known, therefore for large enough b, the problem is still intractable.

On the contrary the problem of deciding if a number is prime or composite,
the primality test, is much easier than factoring the number itself. In fact a
deterministic polynomial time algorithm exists, the AKS primality test, that
runs in O(log n). This result is of great importance because it makes possible
the setup phase for the RSA problem that we describe in the following.
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B.1.1 RSA Problem

The intractability of this problem is the base for the security of the RSA public
key encription scheme and the RSA digital signature scheme [Lab00].

De�nition B.2. (RSA Problem) Given a positive integer n, product of two
distinct odd primes p and q, choose a positive integer e < n and coprime with
φ(n) = (p−1)(q−1). Given an integer c < n, the RSA problem is the following:
�nd m so that me ≡ c mod n.

This task is the same as �nding the eth roots of a number modulo a composite
number n, whose factors are not known. The constraints imposed on e and c
ensure that there is exactly one m that solves the problem. As of today the
most e�cient mean that solves the RSA problem involves the factorization of
the modulus n. According to this fact it is conjectured that the RSA and the
integer factorization problem are computationally equivalent, that is for large
enough n, the RSA problem is intractable.

Following the work of [BP97, FO97] an alternative stronger de�nition of
the problem has been proposed, the so called strong RSA problem. In this
formulation the exponent e is not given, but should be self-determined.

De�nition B.3. (Strong RSA Problem) Given a RSA modulus n and an integer
c < n, the strong RSA problem (SRSA) is the following: �nd m and e > 1 so
that me ≡ c mod n.

Assumption B.1. (Strong RSA Assumption) The strong RSA problem is in-
tractable by every polinomial time algorithm.

B.2 Discrete Logarithms

Another building block of classic cryptography is the discrete logarithm problem,
DLP. It is most notably used in the Di�e-Hellman key exchange, in the Elgamal
encryption system and in the Digital Signature Algorithm. More recently has
been explited in elliptic curve cryptography. In this section we describe formally
the problem.

De�nition B.4. (Discrete Logarithm) Given a �nite cyclic group G and a
generator of G, g ∈ G, so that every element of G can be written as a power
of g. The discrete logarithm of an element a ∈ G, is the unique integer x,
0 ≤ x < |G| so that a = gx.

De�nition B.5. (Discrete Logarithm Problem) The discrete logarithm problem
(DLP) is the following: given a �nite cyclic group G, a generator g ∈ G and an
element a ∈ G, �nd the integer x, 0 ≤ x < |G| so that a = gx holds.

The hardness of this problem depends strongly on the structure of the �-
nite group involved. In some cases, in any group for which multiplication is
e�cent, exponentiation is also e�cient. Thus there exist sub-exponential time
algorithms that solve DLP. For the construction of a cryptosystem we need a
stronger assumption of the hardness of the DLP.



APPENDIX B. NUMBER THEORETIC PROBLEMS 72

B.2.1 Di�e-Hellman Problem

This number theoretic problem is closely related to the DLP.

De�nition B.6. (Di�e-Hellman Problem) The Di�e-Hellman problem (DHP)
is the following: given a �nite cyclic group G, a generator g ∈ G and two
elements gu and gv, �nd the element guv.

This problem may appear in two di�erent ��avours�: Computational and
Decisional. The latter is of interested for our work.

De�nition B.7. (Decisional Di�e-Hellman Problem) The decisional Di�e-
Hellman problem (DDH) is the following: given a �nite cyclic group G, a gen-
erator g ∈ G and three elements gu, gv and gw, decide if gw and guv are equal.

Assumption B.2. (Decisional Di�e-Hellman Assumption) The decisional Di�e-
Hellman problem is intractable by every polinomial time algorithm.

B.2.2 Quadratic Residuosity

De�nition B.8. (Quadratic Residue) Let a ∈ Z∗n. a is a quadratic residue
modulo n (QRn) if there exists an x ∈ Z∗n, so that x2 ≡n a, otherwise is said
quadratic non-residue modulo n.

For every �nite group with order a odd prime p with a generator g, |QRp| =
(p−1)/2 and QRp = {g0, g2, g4, . . . , g2(p−2)}. In addition, there is an algorithm
polynomial in the number of digits of a, that decide if an element is in QRp.
More generally, this is always possible every time the factorization of the mod-
ulus is known, thanks to the Jacobi/Legendre symbols. From this fact it follows
that if we take G = Z∗n, it has been proved that the DDH does not hold in the
�nite group G. Still, the group of quadratic residues is itself a �nite cyclic group
and if g is a generator for G, g2 mod n is a generator of QRn. It is conjectured
that the DDH holds in QRn, if n is a prime in the form n = 2p+ 1 with p still
prime and g a generator.

De�nition B.9. (Safe Prime) A number p is a safe prime if even q is prime
and p = 2q + 1, that is if p− 1 has a large prime factor.

This de�nition implies that there is one large subgroup of order q in the mul-
tiplicative group Z∗p: it is supposed that this fact, together with an appropriate
generator, adds an additional layer of resistance against generic algorithms for
discrete logarithms. Obviously if the order of this subgroup is small, it does
not o�er any additional security. Besides to the fact that the DDH holds in
such a group, it is assumed that for large enough factor makes known attacks
more e�cient than generic ones. More generally, we want a large prime q to be
divisor of p− 1, not limiting the choice to the factor two. This kind of group is
called in number theory Schnorr group.

B.3 Identi�cation Protocols

An identi�cation protocol consists of a probabilistic algorithm and an inter-
active n-round protocol between a prover and a veri�er. In the random oracle
world such protocols can be turned into signature schemes using the Fiat-Shamir
heuristic [FS86].
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